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École Nationale Supérieure d’Informatique et de Mathématiques Appliquées
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Abstract

This report addresses the problem of recovering 3D human motion from a single image
sequence, using model-based approaches. We review the current literature on the subject
and propose improvements within an Annealed Particle Filtering framework.

A likelihood function that combines silhouette and visual appearance information is
presented. Our appearance model is based on 2D color histograms computed in CIELab
color space. To avoid pixel mis-attributions caused by self-occlusions, we build visibility
maps that help to correctly sample the images.

A temporal prior specific for walking motions is also proposed to limit the search space
and introduce temporal consistency. It is based on principal component analysis of a set
of walking cycles that are extracted from motion capture data. The particle states are
reformulated to include a low-dimensional point representing a walking cycle, the walking
phase in this cycle and a parameter associated to the walking speed.

Finally, a set of experiments using the HumanEva-I dataset is presented. Tracking re-
sults using the proposed likelihood function show that mixing image features can increase
the estimation accuracy. Additionally, the results are further improved when the PCA-
based temporal prior is included: more accurate poses are recovered using a particle filter
with almost 7 times fewer particles (compared to a filter with a prior based on a Gaussian
random walk).

Keywords: human motion tracking, annealed particle filter, PCA-based prior, appear-
ance model



Résumé

Ce rapport traite de l’estimation de pose 3D d’une personne observée par une caméra
monoculaire. Nous effectuons un état de l’art concernant le sujet et nous proposons des
améliorations dans une nouvelle méthode de suivi basée sur un filtrage particulaire.

Une fonction de vraisemblance qui mélange des informations de silhouette et apparence
est présentée. Le modèle d’apparance utilisé est basée sur des histogrammes de couleur.
Les occultations sont traitées avec des cartes de visibilité.

Une distribution de transition est aussi proposée pour limiter l’espace de recherche et
introduire une cohérence temporelle. Elle est basée sur l’analyse en composantes principales
d’un ensemble des cycles de marche obtenu à partir de données mocap. Le vecteur d’état
du filtre particulaire contient un point dans l’espace réduit qui correspond à un cycle de
marche, la phase de marche et un paramètre associé à la vitesse de marche.

Finalement plusieurs expériences, sur la base HumanEva, sont présentées. Des résultats
du suivi qui utilise la fonction de vraisemblance proposée montre que le mélange de de-
scripteurs peut augmenter la précision de l’estimation. De plus, les résultats sont améliorés
lorsque la distribution de transition est ajoutée : on récupère des poses plus précises en
utilisant un filtre avec presque 7 fois moins de particules.

Mots clefs: estimation de pose 3D, filtrage particulaire, distribution de transition,
analyse en composantes principales



Chapter 1

Introduction

The purpose of monocular human pose estimation is to recover, given a single image se-
quence, the 3D pose of a person at each time step. A wide range of applications would
benefit from a robust solution such as video surveillance systems, human-computer inter-
faces and video indexing and retrieval. Despite the significant amount of research that
has been devoted, this is still an open problem [SB10]. There are several sources of chal-
lenges to this problem such as the high number of parameters that must be recovered,
self-occlusions and depth ambiguities. Additionally, in general settings, people can wear
different types of clothing and the lighting can vary greatly.

Human tracking methods can be classified into two general categories: model-based
(generative) approaches and model-free (discriminative) approaches. Model-free methods
learn a direct mapping from the image to the pose space by training on a labeled dataset.
Once trained, discriminative models have the advantage of quickly produce a result, al-
though the space of recovered poses can be limited to the exemplars used in learning.
Model-based methods propose the use of a body model that can generate observations to
evaluate pose hypotheses. Normally, these approaches require a search for the optimal pose
in a very large search space, which can be slow. However, the accuracy of model-based
techniques is usually better than most of model-free approaches. Because of this, in this
work, we are mainly interested in model-based methods.

In generative approaches, tracking is usually formulated within a Bayesian framework.
In this context, several algorithms have been proposed for human tracking [WN99, DR05,
WR06]. Particle filtering has been very popular in human tracking [SBB10, DR05], due to
the ability of this method to maintain multiple poses hypotheses. If one wants to employ a
particle filter to track a person, two important parts of the system must be designed: the
likelihood function and the temporal prior distribution.

The likelihood function is responsible for the evaluation of poses hypotheses at each
frame, given the image observations. Different image features can be used in the likelihood
function such as silhouettes [DR05, SBB10], edges [SBB10], optical flow [BFH10] and
appearance models [GBRS07, RMR06]. We propose a likelihood function that combines
silhouette and appearance information.

Temporal priors are used to propagate the particles from one frame to the next. In other
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words, they represent the knowledge of the person’s movement between two time steps.
In simple functions, a random walk in the pose space is performed [SBB10]. However,
the search space can be reduced by implementing stronger priors, such as physical-based
priors [BFH10, VSJ08], or by applying dimensionality reduction techniques to the state
space [SBF00, EL09]. We propose a motion model learned from mocap data that is capable
of synthesizing walking cycles. This is used in tracking to constrain the search for poses
to walking postures.

The rest of this report is organized as follows. Section 2 presents the problem of human
pose estimation and discuss its difficulties. In Section 3, we review the literature on the
subject. Section 4 presents our proposed method. Experiments using the HumanEva
dataset [SB06] are shown in Section 5. Finally, we conclude and discuss further work in
Section 6.



Chapter 2

Monocular human 3D pose
estimation

Human pose estimation aims at recovering the 3D position and orientation for each body
part of a person that is observed by a camera. When the task is performed at each
frame using the previous estimates, the problem is often referred to as human tracking.
Tracking is defined, in general terms, as the task of continuously identifying the position
and orientation of an object with respect to the camera given a frame sequence where
both the object and camera can move. Mathematically, given a rigid object defined by the
set of homogeneous 3D points M, the purpose is to find the rotation matrix R and the
translation vector t of the projection equation1:

sm = PM, (2.0.1)

where s is a scale factor and m are the projections of the object 3D points. The projection
matrix P can be decomposed as:

P = K[R|t]

As is common in the literature, the matrix of intrinsic parameters K is assumed to be
known, i.e. the camera is calibrated. Finding the projection matrix P can be viewed as
finding the object pose with respect to the camera coordinate frame. Alternatively, we can
formulate the problem as to find the object pose w.r.t. the world coordinate frame — in
this case, the transformation from the world coordinate frame to the camera coordinate
frame must be known a priori.

A human body can be seen as an articulated object composed of several rigid parts
corresponding to body parts. Thus, the Human Pose Estimation can be viewed as the
process of recovering the configuration of the underlying kinematic structure of a person.
The body configuration parameters are chosen beforehand and can vary from only the pose
of the center mass as to a more complete model that determines the pose of each limb.

1More specifically, the equation represents a projection for the pinhole camera model.
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2.1. MONOCULAR VS. MULTIVIEW APPROACHES 5

Treating each limb as independent complicates the tracking as it increases the number
of degrees of freedom (DoF) that are needed to be estimated (each limb is defined by 6
DoFs). Additionally, the human body has a structure that must be taken into account in
the tracking, to not only simplify the pose, but also to impose realistic body configurations.
The main approach to achieve this is to connect body parts using a kinematic tree.

The use of such structure makes the 3D pose of given limb be dependent of the 3D
pose of the root node (for instance, the pelvis) and the rotations between body parts that
are adjacent in the kinematic tree. For example, given that the root node is the pelvis,
the 3D position of the foot depends on the global position and orientation of the pelvis
and the angles for the knee and ankle. Formulated in this fashion, the configuration of the
articulated body can be represented by a state vector x:

x = [τ r
x , τ r

y , τ r
z , θr

x, θ
r
y, θ

r
z, θ

(i,j)...],

where [τ r
x , τ r

y , τ r
z ] is the position of the root node, [θr

x, θ
r
y, θ

r
z] its orientation and θ(i,j) the

relative angles between all pairs of limbs i and j that are connected in the kinematic tree.
Each joint has up to 3 angles. For instance, the elbow joints often have only one DoF, as
the shoulder joints have three.

Using this notation, the monocular human pose estimation problem can be formulated
as the sequential recovering of the state vector xt at instant t, using the observations yt

provided by the camera and the previous state xt−1. While there are robust methods for
monocular tracking when planar or simple rigid models are used (see [LF05] for a good
survey of these methods), estimating the motion of a person viewed by a single camera is
still an open problem [SB10].

2.1 Monocular vs. multiview approaches

Human tracking is mostly a solved problem for controlled and static environments with
several cameras and subjects wearing tight fitting clothes. Indeed, commercial applications
for markeless motion capture in such conditions are available [SB10]. Relying on a single
camera to capture human motion is a very challenging problem that is of great interest
for applications where only one camera is available, which is often the case for video
surveillance and human-computer interaction applications, for instance.

A major difficulty for monocular pose estimation are depth ambiguities created by the
projection of 3D objects, in a 2D plane. Because of these ambiguities, two very distinct
poses can fit equally well the same image observation, particularly if the image cue em-
ployed lacks depth information (e.g. silhouettes).

Considering that different configurations can explain one same image observation in a
given frame, the estimation procedure must cope with this multimodal relation between
pose and observations. Frequently, model-based approaches address this problem by em-
ploying a multiple-hypothesis trackers, such as particle filters, that can maintain different
peaks in the likelihood function. Similarly, for model-free approaches, this means that the
mapping from the observation to the pose must be multivalued.



6 CHAPTER 2. MONOCULAR HUMAN 3D POSE ESTIMATION

Another challenge in human pose estimation are the self-occlusions between body parts.
This implies that not all degrees of freedom are observable in a single monocular image
(actually, it is estimated that at least a third of the DOFs are nearly unobservable [ST03]).
Self-occlusions must be detected in order to avoid mis-attribution of image features to
occluded regions.

Many other difficulties in human motion tracking (that are not exclusive to the monoc-
ular case) exist, this report will not attempt to review all of them, but the reader is referred
to [Smi06] for a comprehensive review.



Chapter 3

State of the art in Human Motion
Estimation

Human pose estimation has been an active field of research for many years and the as-
sociated literature is very extensive. Particularly, in the last two decades, vision-based
approaches have received a great deal of attention since many applications, such as sur-
veillance and Human-Computer Interaction, would benefit from a robust solution. In the
effort to summarize these works, several surveys were made [Pop07b, FAR06, MHK06]. In
order to organize the large amount of techniques that had been proposed, different tax-
onomies were employed. We chose to divide the range of methods into two classes, similar
to [Pop07b]: model-based and model-free approaches.

Model-based (generative) approaches employ a model of the human body and a likeli-
hood function (or cost function) that is used to find optima with respect to observations
provided by the cameras. The model must be accurate enough, but also relatively simple
not to increase the computational cost of the method to prohibited levels. We address
both the model and model-based methods in section 3.1.

Model-free (discriminative) methods try to obtain a direct relation from image observa-
tions to poses. Two main classes of model-free methods can be identified: learning-based
and example-based. In learning-based techniques, a mapping between pose and observa-
tion is learned from a training set consisting in pairs of images and corresponding poses.
Example-based methods maintain a large database describing poses both in the image and
pose space. These techniques are addressed in section 3.2.

3.1 Model-based approaches

3.1.1 Body models

Using a body model for tracking can simplify the evaluation of poses hypothesis and pro-
vides some flexibility in pose estimation (e.g. motion constraints can be added in a natural
way). However, one must be careful in choosing the appropriate model such that it rep-
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8 CHAPTER 3. STATE OF THE ART IN HUMAN MOTION ESTIMATION

resents well a real human body but still is simple enough to make the algorithm run in
reasonable time. These models can be described in 2D or 3D.

2D models are suitable to recover motion that is parallel to the image plane or to
find body parts locations (these 2D locations can be “lifted” to 3D poses afterwards).
An example of such models is the commonly used “cardboard” model in which body
parts are represented using planar patches [JBY96]. More recently, pictorial structures
[FH05] have been introduced to Pose Estimation to detect and describe body segments
in 2D [LH04, ARS09] where the spatial relations between parts are described by prior
distributions.

A wide range of body models were proposed to describe a person in 3D. Usually,
to represent the kinematic structure of a human body, a tree is employed to represent
the relations between parts [BB06]. To represent the body outer shape, each segment is
described using, for instance, a tapered cylinder [BB06, SBB10]. More complex models
use super-quadratics [GD96] or polygonal surfaces [BB09]. In [PF01], the authors use an
even more complete model, with a layer to simulate muscles and fat tissues.

Clearly, the number of degrees of freedom (DoF) can vary for each type of body model,
going from roughly 10 for simple ones to more than 50 in complex ones. When a single
camera is used for tracking some of the DoFs are unobservable, so simpler models are
preferred [BFH10, ARS10]. However, regardless the model that has been used, kinematic
constraints are often used to prevent self intersections and to limit joint angles (which can
be learned from data or be fixed using anatomical joint limits [Pop07b]).

3.1.2 Pose Estimation

The reconstruction of full-body motion can be formulated as an incremental or as a batch
problem. In incremental methods, the pose is estimated (or updated) each new image
observation. On the contrary, batch approaches optimize poses over a sequence of frames.
Examples of batch methods are found in [ARS10] and [FDLF10]. Both methods employ
Hidden Markov Models (HMMs) that are used to refine early pose detections by finding
the most probable sequences of states in the Markov chain.

Incremental tracking for motion estimation is usually formulated as a Bayesian infer-
ence task, such that the objective is to estimate the current posterior distribution in the
pose space given the image measurements. The approximation of this posterior can be ob-
tained through several methods such as optimization techniques or Kalman filter [WN99].
However, the projection of a 3D object in a 2D image creates ambiguities that are best
addressed by considering multiple hypothesis in the tracking. As human motion is also
non-linear, particle filtering (described in Section 4.2) have been commonly used for this
task [DR05, ST03, SBB10].

Even though particle filtering is a very flexible framework, the high number of DOF
present in the state requires a high number of particles to accurately estimate the pose —
as the likelihood of each particle must be measured, there is a limitation on the number of
particles that can be processed by the system while still obtaining a reasonable computation
time.
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To solve this problem it is possible to spread particles in areas where the maximum
likelihood is probable to happen — for instance, in [DR05] the authors introduce the An-
nealed Particle Filter that resamples the particles several times at each frame to gradually
concentrate particles around global maxima. With the same purpose, Sminchisescu and
Triggs [ST03] propose the Covariance Scaled Sampling (CSS) which guide the particles
around maximas.

It has been shown that these algorithms can increase accuracy (see [SBB10, WR06] for
evaluations). However, if the likelihood function and temporal prior are poorly designed,
no resampling strategy will solve robustly the problem in the presence of occlusions or
ambiguities. A more general way to increase reconstruction quality in such frameworks is
to model temporal priors that reduce the number of particles required (by adding motion
constraints) and to construct likelihood functions that are more discriminative.

3.1.3 Temporal priors

Even if the number of possible configurations in a human body model is immense in theory,
the actual subset of achieved ones is much smaller for a given activity. As previously
discussed, simple constraints that exclude configurations with self intersections or joint
angles over thresholds can improve accuracy in tracking [SBB10]. To further reduce the
number of possible configurations, physical constraints can be applied.

Vondrak et al. [VSJ08] enforce physical plausibility simulating the human body dynam-
ics and interaction with the environment to avoid, for instance, footskate and configurations
where a foot intersects the ground. To achieve this, they first extract a goal position for
each frame from a mocap database using the current state as input. Then, a physical simu-
lation takes place to detect collision and to generate new state hypothesis — including the
velocities of each joint. The method increases motion realism while reducing localization
error.

Brubaker and Fleet [BFH10] present a more simple physical-based model for lower-
body dynamics that simulates walking by applying forces to a spring-mass system. This
dynamics model is planar and the state only depends on four parameters: two angles
related to the orientation of the legs and their velocities. Because the model is too simple
to reconstruct the 3D pose, tracking uses a 3D body model that is, at each time step,
constrained to match the simulated dynamics. The method can work well even in presence
of occlusions and does not employ mocap data. Nonetheless, the approach does not easily
generalize for full-body pose estimation and the likelihood function used in the experiments
do not solve depth ambiguities (which are common in monocular tracking).

Physical-based models can be good to account for only plausible poses and to introduce
temporal consistency, but they can be suitable for only one range of activity, such as
walking. In this case, generalization can be difficult to achieve.
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3.1.4 Likelihood functions

Likelihood functions are used to measure how well a hypothesis explains the current image
observations. To model good likelihoods is a challenging task due to several difficulties: the
problem of finding which pixels in the image correspond to a person, called data association,
can be surprisingly hard [FAR06]. Moreover, the model must take into account ambiguities
caused by the camera projection and frequent self-occlusions.

Silhouette is nowdays the feature that is most used to design likelihood functions
[MHK06, Pop07b, BFH10]. Silhouettes can be recovered easily in controlled environments,
but the lack of depth information makes estimation harder, specially for monocular track-
ing (it can be easily seen that two very distinctive body configurations can create the same
silhouette).

Wang and Rehg [WR06] associate templates, that are initialized in the first frame, to
each body part. At inference time, these patch templates are compared (using SSD) with
hypothesis generated using a particle filter. Yet simple, the model is not adaptive and does
not take into account self-occlusions.

Balan and Black [BB06] use an adaptive model based on the Wandering-Stable-Lost
(WSL [JFEM03]) framework which is extended to cope with self-occlusions. Each pixel
in their appearance model is described by an 1D WSL model, i.e. a mixture model that
includes: a stable component S that adapts to slow changes, the wandering component W to
deal with rapid changes and the lost component L to reject outliers. The likelihood function
is defined using these WSL models with the goal of aligning coherent structures over time
(the function also includes silhouette information). Results showed that performance is
improved (in multi-view scenarios) with respect to the case where only silhouettes are
used.

In [RMR06], the authors propose a method which builds appearance models based
on color histograms that are constructed on-line from monocular images. For tracking, a
given pose is evaluated by first synthesizing an appearance model using the pose and then
comparing it with a model that was obtained at initialization — this initial model is also
constantly updated using the means of the posterior density. Fossati et al. [FDLF10] pro-
pose a method that first detect specific postures of a walking scene using spatial-temporal
templates [DLF06]. Then, from these detections, an appearance model based on a color
histogram for each limb is computed in the region of the image corresponding to the pro-
jection of a 3D body part. After this learning phase, the color histograms are used to
synthesize images of the appearance model given an specific pose; finally, a search for the
pose that minimize the difference between the synthesize image and the current frame is
performed.

3.1.5 Dimensionality reduction

Despite the fact that the pose space is high-dimensional, many of the human activities are
located on low-dimensional latent spaces [EL08]. If this latent space is recovered, tracking
can be performed using fewer particles. We are mostly interested in generative methods
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that use dimensionality reduction, but the technique has also been applied to discriminative
approaches as in [NFC07], for instance.

Tracking in this low-dimensional manifold requires a mapping from the latent space
to the pose space and its inverse. Several methods to construct this mapping had been
used with success for pose estimation, such as: Locally Linear Embedding [LE10], Isomap,
Locally Linear Coordination (LLC) [LhYST06], Gaussian Process Latent Variable Models
(GPLVM) [TLS05, UFHF05].

Li et al. propose in [LhYST06] a method to learn an embedding space for body config-
uration and use it for tracking. In the first step, an offline algorithm applies LLC to learn
the mappings using body centered mocap data of a given activity. The points in the latent
space form clusters such that, if two points are close, they will correspond to poses that
are also close in the original space. In the online stage, 3D pose estimation is done using a
multiple hypothesis tracker where the state is defined by a 3D global position (correspond-
ing to the pelvis) and a point in the latent space. New hypothesis are generated using the
embedding space with a dynamical model that assumes constant velocity.

The observed motion, described by silhouettes, contours or other features, also lie on
low-dimensional manifolds, referred here as the visual manifold. The problem of combining
a body configuration manifold with a visual manifold was addressed in [EL09] and [LE10].
Elgammal and Lee [EL09] show that the kinematic manifold and the visual manifold are
related through a latent variable that represents body configurations. But, unlike the
kinematic manifold, the visual manifold depends also on the viewpoint and style (the latter
is related to the shape of the observed human). To construct both manifolds, they consider
observations obtained from a view circle around a person performing a periodic motion.
If a specific body configuration is fixed, the obtained view manifold is homeomorphic to
the unit circle. The same can be noticed when a given view is fixed and we extract a
body configuration manifold. This suggests that, ideally, the visual manifold should lie in
a topological structure that is homeomorphic to a torus.

A mapping from the torus to the visual data (such as silhouettes) is computed in two
steps. First, a mapping is built from the pairs of observations and kinematic data to the
torus for several viewpoints. Second, these relations are used to fit a mapping function
from the torus space (R3) to the visual data space using several radial basis functions.
This continuous mapping is used to synthesize observations (given a body configuration
and a view orientation) which are used in tracking. A particle filter is employed. The state
vector consists of the coordinates in the torus and a shape parameter that is time invariant
and detected in the first frames.

Dimensionality reduction is good solution to both create a motion model for tracking
and reduce the computational cost of the system while achieving high accuracy — the
discussed approaches show state of the art results. However, it is only possible to recover
motions of the activity observed in the learning phase.
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3.2 Model-free approaches

Rather than modeling a temporal prior and a likelihood function, model-free methods
model a direct relation from the image to the pose space. For such methods, two main
classes can be identified: example-based and learning-based. Notice that although the
mapping from the image to the pose is known to be multi-valued, most methods consider
as if it was single-valued [Pop07b].

3.2.1 Example-based

This class of methods keeps several exemplars of images (or features) together with the
corresponding pose in a database. Then, for an input image, a search is performed to find
the most similar image and the associated pose is returned (possibly, several poses from
the set of most similar images can be interpolated to produce the result).

Poppe [Pop07a] uses histograms of oriented gradients (HoG) within the bounding box of
silhouettes to encode each exemplar in the database. For estimation, the HoG of the input
image is computed and compared to all dataset examples using the Manhattan distance.
Then, the n closest entries are interpolated (in body-centered coordinates) to generate the
final pose.

Mori and Malik [MM06] propose a database of 2D views of a person taken in a variety of
different configurations and viewpoints. For each of these images, the body parts locations
(in 2D) are also stored. To recover the pose, the input image is matched with the database
using shape contexts [BMP02], i.e. the stored exemplars (including their 2D locations) are
deformed to match the image observation. 2D joint locations are then “lifted” to estimate
the 3D pose.

Howe [How04] uses a database of artificially rendered silhouettes associated with their
respective poses. The estimation for each frame is proceeded as follows: the silhouette is
first extracted and compared to the database using Chamfer distance and turning angles
metric. Several candidates are obtained and temporal continuity is enforced via a Markov
chain that removes unlikely pose sequences. Finally, the result of the Markov chain is
smoothed and an optimization takes place to increase accuracy and reduce jitter. This
work is extended in [How05] to use optical flow information.

Example-based pose estimation requires a high number of exemplars that are often of
high dimensionality. To efficiently search in such databases, Shakhnarovich et al. [SVD03]
propose the use of several hash functions to increase inference speed. However, even if the
search is quick, the pose space is limited to the examples in the database.

3.2.2 Learning-based

Learning-based methods try to learn a function that maps directly from the image features
to the pose space. In other words, using the same notation as in equation (4.2.1), the goal
is to estimate p(x|y) where x represent the pose and y the observation (encoded in image
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features). As the mapping from the observation to the pose space is multi-valued, p(x|y)
must be multi-modal.

Agarwal and Triggs [AT06] use shape contexts to encode artificially created silhou-
ettes from a single view. A non-linear regression is used to model the mapping between
histograms of shape contexts and poses. To address ambiguities, created by the use of
silhouettes, dynamics are applied at each time step.

The dimensionality of both pose and feature spaces is usually high, hence, to learn
p(x|y) requires a large training dataset. Navaratnam et al.[NFC07] provide a technique
to use unlabeled data to train a regression model by including in the learning phase the
marginal distributions p(x) and p(y), which can be easily obtained. To this end, they
extend the GPLVM algorithm such that it can also learn from marginal distributions.
When used for tracking, the regression gives multiple hypotheses that are treated as states
in a Markov Chain model (transition probabilities are learned from data). The Viterbi
algorithm is then used to compute state sequences.

Bo et al. [BSKM08] also address the problem of large training dataset. They propose
an extension to the Mixture of Experts algorithm that can be learned from a large dataset
(more than 100, 000 data points) in reasonable time. Different image features can be used
with this method, they present three: histograms of shape context descriptors, histograms
of SIFT descriptors sampled on the silhouette and hierarchical image descriptors (described
in [KSM07]). Experiments show good performances, specially when context descriptors are
included.



Chapter 4

Proposed method

In this section, we propose a model-based human tracking method that estimates the
body configuration at each time step, i.e. the approach is incremental. The initialization
pose is assumed to be given and close to the ground truth configuration. The tracking is
formulated as a Bayesian inference problem, which is discussed in Section 4.2. Next, in
Section 4.3, different likelihood functions are presented and in Section 4.4, temporal priors
are addressed.

4.1 Body model

The body model used for tracking is based on the one proposed in [SBB10]. It is composed
of 15 body parts represented by truncated cones, as shown in Figure 4.1.1. The joints
corresponding to the shoulders, hips, thorax and neck have 3 DoFs each, while clavicles
have 2 DoFs. The remaining joints (knees, ankles, elbows and wrists) are modeled with
only one DoF. We assume that the length and width of body parts are known and fixed.
Therefore, a body configuration can be completely described with 36 parameters, compris-
ing 6 parameters related to the global position and orientation of the pelvis and 30 values
for the relative joint angles between limbs.

In order to recover the position and orientation of each limb with respect to the world
coordinate frame, direct kinematics are applied using the hierarchy of the kinematic tree
depicted in Figure 4.1.2. This tree is used to describe the body parts hierarchy, in such
a way that each non-root node can be placed with respect to its parent by a local trans-
formation. In other words, a given limb position and orientation with respect to the root
node can be easily recovered by traversing the tree starting from the root and, at each
node, concatenating the local transformation matrices.

As discussed in Section 3.1.1, the choice of body model must take into account several
aspects because it has a great impact in tracking performance. In one hand, if the model
is too simple, we limit the range of activities that can be tracked and the information
recovered is less informative (because few DoFs were used). On the other hand, if the
body model is too complex, such as a model that represents body parts using triangular

14
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Figure 4.1.1: The body model is composed of 15 body parts and 36 degrees of freedom.
Blue points represent joint locations.
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(a) Kinematic tree (b) Body model with indexed parts

Figure 4.1.2: Kinematic tree linking body parts that was used in the proposed method.

meshes, it can be difficult to adapt the model for different subjects and the computational
cost of tracking can be increased to prohibitive levels. In this work, we tried to reach a
middle ground in the complexity aspect by using a highly articulated model with body
parts represented by simple primitives that can be easily adapted.
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4.2 Bayesian Framework

As it is common in the literature, tracking is formulated as a Bayesian inference task. More
precisely, let xt denote the body parameters at time t, then the objective is to estimate the
posterior distribution of xt, given the posterior from the previous time step p(xt−1|y1:t−1),
a temporal prior p(xt|xt−1) and a likelihood function p(yt|xt). This is done recursively by
solving the Bayes equation:

p(xt|y1:t) ∝ p(yt|xt)

∫
p(xt|xt−1)p(xt−1|y1:t−1). (4.2.1)

The Bayesian formulation is very popular in human tracking, partially because it pro-
vides a principled way of integrating prior knowledge on human motion and also because it
allows to easily mix different image cues. Different methods, such as Kalman filters, have
been proposed to solve the equation (4.2.1)[MHK06]. However, the multimodal aspect of
the posterior p(xt|y1:t) is better addressed in approaches that are able to maintain multiple
hypothesis, such as particle filters.

4.2.1 Particle Filter

The purpose of particle filters is to approximate the posterior p(xt|y1:t) in equation (4.2.1)

with a set of N samples, called particles. Each particle is composed of a state value x
(i)
t

representing a body configuration and a weight π
(i)
t that is proportional to the likelihood

evaluated at the particle state, π
(i)
t ∝ p(yt|x(i)

t ). Given an initialization, particle filter
algorithms can be roughly described by three steps:

• Resampling: A new set of particles is drawn with replacement from the previous set
{x(i)

t ; π
(i)
t }N

i=1. The probability of a given particle being chosen is proportional to its
normalized weight. Resampling concentrates particles around posterior modes and
eliminates the ones that are unlikely to be the truth state.

• Prediction: particle states are propagated according to the temporal prior p(xt|xt−1).
This step represents the grown of uncertainty due to the body movement between
frames. Temporal priors try to model the knowledge about this movement. The
simplest model for temporal prior consists in just adding a normally distributed
noise to the previous state:

p(xt|xt−1) = N (xt−1, σ) (4.2.2)

• Filtering: the likelihood function is evaluated for each particle. The weights are then
normalized, such that

∑N
i=1 π

(i)
t = 1, and the resulting set of particles approximates

the posterior distribution p(xt|y1:t). Therefore, both the expected value x̂t and the
maximum a posteriori x̂MAP

t of the posterior can be approximated from the particle
set:
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x̂t =
N∑

i=1

π
(i)
t x

(i)
t (4.2.3)

x̂MAP
t = x

(j)
t , π

(j)
t = max

i
(π

(i)
t ) (4.2.4)

Although particle filters are very flexible and can cope with multimodal posteriors,
the computational cost becomes very high when a large number of particles is needed.
Unfortunately, that is the case in human tracking due to the high number of degrees of
freedom that must be recovered. Many approaches, already discussed in Section 3, attempt
to reduce the number of particles by better sampling the state space. We choose to employ
the so-called Annealed Particle Filter (APF), proposed by Deutscher in [DR05], that has
been shown to improve tracking results while maintaining the same computational cost
[DR05, SBB10].

4.2.2 Annealed Particle Filter

The main idea behind the Annealed Particle Filter (APF) is to perform, at each inference
time, several iterations (layers) that gradually concentrates more particles around the
peaks of the posterior density distribution. The algorithm works by propagating the set of
particles across layers using slightly different weighting functions.

Let St,m = {x(i)
t,m; π

(i)
t,m}N

i=1 denotes the particle set at time t and layer m, then the
particle weights are evaluated from layer M to 0 using a set of temperature parameters
βm:

π
(i)
t,m ∝

p(yt|x(i)
t,m)βm∑N

j=1 p(yt|x(j)
t,m)βm

. (4.2.5)

A large βm in equation (4.2.5) produces a peaked weighting function while a small value
has a smoothing effect on the weights as illustrated in Figure 4.2.1 [DR05].

In order to propagate the particles from the layer m to the layer m−1, states are drawn
randomly from St,m with replacement and with a probability equal to their weights. Then,
a noise is added to the particles, similar as shown in equation (4.2.2):

xt,m−1 = xt,m + Bm (4.2.6)

where Bm is a noise drawn from a normal distribution:

Bm ∼ N (0, αM−mΣ) (4.2.7)

Usually, α is assumed to be 0.5 which decreases the covariance matrix Σ and therefore
decreases the variance of particles at each layer. When the last layer (m = 0) is processed,
the set of particles St,0 is used for the next time step, i.e. St+1,M = St,0.
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Figure 4.2.1: An illustration of the annealed particle filter with M = 3 [DR05].

4.3 Likelihood functions

The likelihood function p(yt|xt) is an important part of a Bayesian tracker that is respon-
sible for describing the relation between image observations and poses hypotheses. Several
likelihood functions were proposed for human tracking (Section 3.1.4) and different image
cues can be combined. We suggest that different likelihoods can have complementary qual-
ities, which led us to an hybrid approach. The next sections present the likelihoods used
in our proposed method.

4.3.1 Silhouette

Human silhouette (also called figure-ground segmentation) is a very popular image feature
that has been used to design different likelihood functions. The reason is twofold: first,
silhouettes encode a great deal of information that can help tracking, specially in multi-view
settings. Second, they are easy to recover from scenes with static background.

In order to extract silhouettes, a model of background must be learned from a set of
static background images. The procedure extracts the mean and the variance of pixel
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values from the entire set of images and for each channel separately. These values are used
to parametrize a Gaussian distribution for each pixel location p and channel c, denoted
N (µc

p, σ
c
p). At runtime, the current frame is segmented by evaluating its distance from

the learned distributions at each pi location. These results in a probability map as the
one shown in Figure 4.3.1a that is subsequently filtered to generate the silhouette map
Ms(Figure 4.3.1b).

Ms(p) =

0 if
∏

c

N (Ic(p); µc
p, σ

c
p) > εs

1 otherwise

(4.3.1)

where Ic is the c-channel image of the current frame and εs is a threshold that is usually
determined empirically.

(a) Probability map of the background (b) Extracted silhouette

Figure 4.3.1: An example of human silhouette extraction from the HumanEVA dataset
[SB06].

To evaluate a given pose, using the body model described in Section 4.1, a silhouette
can be synthesized by projecting the model w.r.t. the camera to create a binary map Mm.
Then, a matching function based on the area overlap between the two silhouettes (one
extracted from the frame and another based on the model) is used:

− ln ps(yt|xt) ∝
1

N

N∑
i=1

(1−Ms(mi)))
2, (4.3.2)

where N is the number of sampled points mi inside the model projection. Figures 4.3.2c
and 4.3.2f are illustrations of the likelihood evaluation for two distinct poses — in these
images, the blue area correspond to the overlap region.

The likelihood function (4.3.2) is a simple and somewhat naive measure for monocular
tracking. The reason is that it only takes into account the number of foreground pixels
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(a) (b) (c)

(d) (e) (f)

Figure 4.3.2: Two examples of (naive) likelihood evaluation based on silhouettes. First
row: a pose (a) near to the correct one is used to generate a synthetic silhouette (b) and
the overlap of this with the foreground extracted from the frame is computed (blue region
in (c)) using equation (4.3.2). Second row: a pose (d), with a large deviation of the left
leg correct pose, generates the silhouette (e) and the overlap is computed (f). Notice that
even if the first pose is clearly better than the second one, the likelihood values will be
similar.

covered by the model and does not penalizes the pose for the set of points in the silhouette
map that were not covered. Despite this limitation, this formulation is frequently used in
state of the art methods because it is computationally efficient: the generated silhouette
Mm can be easily subsampled to evaluate a pose. Moreover, the problem can be mitigated
in multi-view approaches by using observations provided by all cameras. However, for
monocular scenarios, this problem cannot be disregarded.

To address this issue, the likelihood must be reformulated to penalize poses with body
projections that do not cover the entire silhouette. Several alternatives were proposed
[GBRS07, SBB10, DLC08] and we chose to describe here the so-called bi-directional sil-
houette, as proposed by Sigal and Balan [SBB10]. The objective is to minimize the non-
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overlapping areas, such as those depicted in white and yellow in Figure 4.3.2f. The number
of pixels, Nw, that are not covered by the synthetic silhouette in Mm can be computed
over all image pixels p as follows:

Nw =
∑
p

[Ms(p)(1−Mm(p))] . (4.3.3)

In the same manner, the number of non-zero pixels in Mm that are outside the image
silhouette Ms is defined by:

Ny =
∑
p

[Mm(p)(1−Ms(p))] . (4.3.4)

The likelihood (4.3.2) is redefined as the combination of these two regions, such that:

− ln ps(yt|xt) ∝
1

2

[
Nw∑

p Ms(p)
+

Ny∑
p Mm(p)

]
. (4.3.5)

The bi-directional formulation can help improve accuracy [SBB10] for both monocular
and multi-view tracking. However, as previously discussed, monocular silhouettes intro-
duce depth ambiguities, as shown in Figure 4.3.3[How04]. The image is an example where
simultaneous left-right inversion of the pose yields to identical silhouettes. It is impossible
to avoid right-left reversal in trackers that are solely based on silhouettes. This suggests
that a more discriminant image feature must be added to the likelihood function to increase
tracking results.

Figure 4.3.3: Illustration of two very distinctive poses that generate the same silhouette
[How04].
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4.3.2 Appearance

The observation that the appearance of a person remains mostly unchanged in a frame
sequence has inspired several likelihood functions based on the appearance of individual
body parts [RMR06, GBRS07, Pop07b], often described with color histograms or image
templates. Our approach is based on color histograms compute in CIELab color space.

During initialization, an appearance model composed of several histograms is built:
torso, pelvis and head are represented by one histogram each and pairs of symmetrical
limbs, e.g. left and right upper arm, are grouped together in a single histogram. In other
words, the model assumes that left and right limbs have the same appearance. Figure 4.3.4
is an illustration of the procedure employed to extract the appearance model given a pose
and a frame.

In the first step, the RGB image is converted to CIELab space, which separates the
lightness of the color (L-channel) from the color channels (a and b); only the a- and
b-channels are used. Next, the body model is projected, with respect to the camera
coordinate frame, using the pose from the input. Regions of the image that are inside a
given projected cylinder are sampled to create the set of 2D histograms that compose the
appearance model.

To avoid misattributions of pixels caused by self-occlusions, a visibility map is con-
structed as proposed in [BB06] by first sorting the model cylinders in decreasing distance
from the camera. Then, body parts are rendered in order to generate a map such as the
one in Figure 4.3.4. Each pixel in this map contains the index of the body model visible
at that location. In the sampling step, we check if the pixel of a given limb is not occluded
by another limb using the visibility map.

In order to measure a particle using this appearance model, the set of histograms built
in the initialization step is compared to the histograms extracted from the particle state.
Let Âp = {ĥb}B

b=1 be the appearance model composed of B = 9 histograms ĥb computed at
initialization and {hb}B

b=1 the set of histograms extracted from the current frame given the
particle state, then a likelihood function can be formulated using the distance from these
two models:

− ln p(yt|xt) ∝
B∑

s=1

ws

[
BC(ĥs, hs)

]
, (4.3.6)

where ws are normalized weights that are proportional to the body part sizes. They
are defined at initialization using the ratio between the number of sampled points for a
given part and total number of sampled points. BC(ĥs, hs) is called the Bhattacharyaa
coefficient, defined as follows:

BC(h1, h2) =

Nbins∑
i=1

Nbins∑
j=1

√
h1(i, j)h2(i, j). (4.3.7)

The likelihood function (4.3.6) does not take into account how many pixels were sampled
to generate the particle appearance. For this reason, a particle can receive a good weight
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Project cylindersConvert from RGB to CIE L*a*b*

Visibility map

Sample visible pixels for each body part

Compute 2D histograms

...

Appearance model

Figure 4.3.4: Illustration of the process that builds an appearance model.

even if the person silhouette is not entirely covered by the projection of the cylinders.
Therefore, tracking that is based solely in this measure tends to poorly estimate limb
positions. This problem can be addressed by mixing the silhouette information, as defined
by equation (4.3.2), to the weighting function (4.3.6). Let ps(yt|xt) be the silhouette
log-likelihood and pa(yt|xt) the appearance log-likelihood, then the mixed version of the
likelihoods is:

− ln p(yt|xt) ∝ (1− α)ps(yt|xt) + αpa(yt|xt), (4.3.8)

where α controls the importance of each function in the mixed likelihood. We carried
out experiments, described in Section 5, that suggest that this mixed version of likelihood
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significantly improves tracking results.
The appearance model extracted in the first frame represents the system approximation

of the real appearance of the person. This estimation is certainly limited: in the first frame
not the whole body is observed by the camera and the appearance can change along the
sequence. This suggests that the model must be adapted at runtime using the previous
pose estimates [RMR06, GBRS07].

Let Āp = {h̄b}B
b=1 be the set of histograms extracted from the previous frame using the

expected value of the pose posterior, x̄t. Then, each histogram ĥs for each body part s, is
updated as follows:

ĥs =
(1− γ)N̂sĥs + γN̄sh̄s

(1− γ)N̂s + γN̄s

, (4.3.9)

where N̂s and N̄s are the number of pixels that were sampled to generate ĥs and h̄s,
respectively. These values are used to lower the relevance of histograms computed from
body parts that are partially occluded. The parameter γ controls the adaptation speed of
the histograms.

In our experiments we found that, despite the fact that this adaptation can help the
tracking, the described method is very sensible to noisy/incorrect pose estimates. This
reduces the ability of the system to recover from failure because the appearance model of
the person keeps being (incorrectly) updated in the frames where the tracker is lost.

4.4 Temporal priors

As previously discussed, the temporal prior p(xt|xt−1) is responsible for modeling the
knowledge about the human motion in between two time steps. Several formulations
have been proposed (see Section 3.1.3). Simple priors, such as the one defined by equa-
tion (4.2.2), assume a (Gaussian) random walk in the pose space and therefore does not
encode much information about the activity that is being performed neither about the
person’s trajectory. However, this prior can be improved in two simple ways, as proposed
in [SBB10].

First, it is possible to learn good noise parameters using motion capture (mocap) data.
For instance, the standard deviation for a given angle can be defined as half of the maximum
interframe change of this angle in the mocap sequences. The dataset can also be divided
in different activities, in order to extract more specific variances. Second, since not all
values for joint angles are anatomically possible, an anatomical range can be defined for
each angle — these limits are generally defined by hand. These temporal priors have
proved successful in increasing the accuracy of results and reducing the number of required
particles [SBB10].

However, even if the state space of a body configuration is very large in theory, when a
class of movement is observed, the actual set of achievable configurations is much smaller.
So, it is possible to further limit the search space using activity-specific priors. As we are
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mainly interested in tracking walking sequences, we propose the use of a temporal prior
specific for walking sequences. The model is inspired by the fact that walking is a periodic
motion which can be segmented in walking cycles. Figure 4.4.1 shows two joint angles
extracted from a walking sequence (from mocap data) — it can be seen that the angles
are highly correlated and that the movement is clearly periodic.
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Figure 4.4.1: Joint angles extracted from motion capture data of a subject walking.

A motion model for walking can be learned from motion capture sequences using PCA
[SBF00, UF04]. The data must be first segmented and scaled into walking cycles, which
can be done using an automatic approach, as follows. Given a walking sequence described
by joint angles over time, the minima of one angle (in our case, θy of the left hip joint)
are extracted to detect the beginning of each cycle, as illustrated in Figure 4.4.2a. These
intervals are used to segment all the angles for the whole sequence.

After segmentation, a set of walking cycles that start (and finish) with similar body
postures is obtained. However, as shown in Figure 4.4.2b, the cycles have different lengths
because of variations in the walking speed so they must be scaled to create cycles with equal
number of samples. To scale the cycles, the data points are interpolated for all angles. We
applied the above approach to the HumanEva-I [SB06] walking sequences (training subset)
that is composed of three different subjects walking at different speeds. Figure 4.4.2c shows
the left hip angle for all the 64 cycles extracted from the training data.

An eigenbasis can be learned using the Singular Value Decomposition (SVD) of the
set of scaled walking cycles, but first the data must be arranged in a matrix. Given a
cycle i, let Θi

t be the vector formed by the n angle values of the cycle at time t, Θi
t =

[θi
1,t, θ

i
2,t, . . . , θ

i
n,t]

T, then a cycle can be represented by a concatenation of Θi
t for all T time
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Figure 4.4.2: Preparation of motion capture data before PCA analysis. The walking
sequence in (a) is segmented (dashed lines) using the minima of the left hip angle (red
dots); all angles are segmented using these intervals. (b) illustrates the need of scaling
the data: the right knee values of two cycles have different lengths. After segmentation,
all cycles are scaled to the same length, (c) shows the left hip angle for all cycles in the
training set after segmentation and scaling.

steps, which results in a nT × 1 row vector, called ai. All cycles ai extracted from the
training data are used to create the matrix A of dimensions nT×m, where m is the number
of cycle exemplars (m = 64 in our case).

To perform a PCA in the matrix A, the mean vector ā is first extracted from all
columns of A. The matrix is then decomposed using SVD in order to extract the principal
components of the data:

A = UΣV T (4.4.1)

where U = [u1,u2, . . . ,um] are the principal components of the training set and Σ is a
diagonal matrix with singular values λ1, λ2, . . . λm sorted in decreasing order along the
diagonal. Principal components are the eigenvectors of the covariance matrix computed
from the data. Each one of these eigenvectors has an associated eigenvalue such that
eigenvectors with large eigenvalues are the most important to describe the data. Therefore,
to reduce the dimensionality of the data, one can choose to keep only the q < m first
eigenvectors. The percentage of the database that q components can recover is given by,

g(q) =

∑q
i=1 λi∑m
i=1 λi

. (4.4.2)

When reducing the space dimensionality, computing g is useful to know how many
eigenvectors are needed to keep most of the dataset variance. Figure 4.4.3 shows the value
of g for different numbers of principal components.

In our experiments, we chose to use the first q components such that g(q) ≥ 0.95, which
is obtained using 11 principal components. Let Ũ = [u1,u2, . . . ,uq] be the reduced version
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Figure 4.4.3: Percentage of the training set that can be generated using different numbers
of principal components.

of U composed of the q eigenvectors with largest eigenvalues, then a walking cycle ã can
be synthesized using a subspace q-dimensional point c = [c1, c2, . . . , cq]:

ã = ā + Ũc. (4.4.3)

All the joint angles in our body model were included in the walking cycles with the
exception of the head. The global translation and orientation were not included either
because their values are generally not cyclic in a normal walking sequence. The subspace
point and the phase, µ ∈ [0, 1], in current cycle can be added to the tracking to enforce a
walking behavior to the poses and also to reduce the state dimensionality.

The state xt is reformulated as the global translation and orientation of the pelvis, the
joint angle of the neck (θh

y ), the subspace point and the phase:

xt = [τ r
x , τ r

y , τ r
z , θr

x, θ
r
y, θ

r
z, θ

h
y , µ, c]. (4.4.4)

The dimensionality of this state formulation is equal to 19, for q = 11, against the orig-
inal 36-dimensional state described in Section 4.1. However, it is necessary to reconstruct
from these parameters the original pose if we want to evaluate the likelihood functions in
the same fashion as previously described. For a given pose x

(i)
t , the walking cycle ã(i) is

first computed using equation (4.4.3) and then the joint angles can be extracted from the
cycle evaluating it at phase µ. Recall that ã(i) is formed by the concatenation of T vectors
Θ

(i)
t . As the phase has values from 0 to 1, the index t of vector Θ

(i)
t can be recovered by:
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t = µ(T − 1) + 1 (4.4.5)

The state parameters, as before, are propagated in time using a Gaussian noise with
the exception of the phase µ that is incremented at each time step:

µt = µt−1 +
1

T
+ B (4.4.6)

where B is a small noise to account for speed changes. The phase is initialized manually
while the PCA parameters are set to 0, i.e. the mean of the walking cycles used in the
learning phase.

This motion model is able to enforce walking poses for the tracking, which increases
accuracy while using fewer particles. However, the phase propagation in equation (4.4.6) is
not suitable for sequences where the walking speed is far from the values in the training set.
This occurs because the increment in the phase parameter is a constant value and defined
by the training exemplars. Figure 4.4.4a shows the 93th frame of a tracking sequence where
the pose is not well estimated because the phase parameter diverged from the correct value.

(a) (b)

Figure 4.4.4: Estimating the walking phase µ parameter in tracking: (a) when only a noise
is used, the phase is not well estimated and the system loses track at frame 93. (b) if a
parameter corresponding to the step of the phase at each frame is included, the tracker is
able to recover the correct pose.

To address this problem, a step parameter st was included in the state space. It is
initialized with 1/T and is propagated in time using a random noise. The phase is then
incremented at each time set using this parameter:

µt = µt−1 + st−1,

st = st−1 + B.
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Tracking the step parameter is analogous to track the speed of the walking cycle. Figure
4.4.4b is a result of a tracking using the parameter — clearly, accuracy is improved com-
pared with tracking where phase is propagated using constant increments (Figure 4.4.4a).



Chapter 5

Evaluation

To evaluate the proposed method and its variants, discussed in the previous section, we use
a dataset that provide, together with video sequences, the ground truth poses obtained by
a motion capture system: the HumanEva-I dataset [SB06]. Using this kind of dataset has
several advantages. The initialization can be performed automatically using the ground
truth pose and the tracking error can be computed accurately and in a straightforward way.
Moreover, the HumanEva-I dataset has become a standard dataset to evaluate human pose
estimation techniques, which allows us to directly compare the results from our approach
with state of the art methods.

5.1 The HumanEva-I dataset

The HumanEva-I dataset [SB06] is composed of several sequences of three different subjects
wearing natural clothing and performing different activities (e.g. walking, jogging, boxing).
The sequences were captured at 60 Hz using 7 synchronized cameras (4 black/white cameras
and 3 color) and ground truth was obtained using marker-based motion capture system.
Since our appearance model is based on color information, we used the walking sequences
captured by the color cameras. To learn the background statistics for silhouette extraction,
as shown in Section 4.3.1, the dataset also contains a set of background images.

The walking sequences are composed of subjects walking in an elliptical path. Figure
5.1.1 shows some example frames of the walking dataset for two subjects.

5.2 Error metric

As proposed in [SBB10], the evaluation measure is defined by the distance of Nm = 15
virtual markers. The markers are placed in the body model joints, represented by blue
circles in Figure 4.1.1, and another marker placed in the top of the head. Let {pi(x)}Nm

i=1

be the set of marker positions that are defined by the state x, then the error is the mean
Euclidean distance from all the markers of the ground truth pose x and the mean estimate
x̄:
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(a) Camera ‘C1’ and frame #300 (b) Camera ‘C1’ and frame #10 (c) Camera ‘C2’ and frame #10

Figure 5.1.1: Example frames in the HumanEva-I dataset of the walking sequence (subjects
‘S1’ and ‘S2’, respectively).

E(x, x̄) =
1

Nm

Nm∑
i=1

‖pi(x)− pi(x̄)‖. (5.2.1)

This metric is commonly used in literature, but two important aspects must be consid-
ered here. First, this metric does not directly include the global orientation of the body,
such that, if two poses have the same relative angles and global positions, but opposed
orientations, the computed error could be small even if, intuitively, it should be large.
Second, the error can be large even if the tracking is visually accurate, i.e. the projections
of the model w.r.t. the camera are aligned with the person’s body. This is usually due to
depth ambiguities in the pose estimation. As an alternative, several authors propose the
use of a relative error measurement [BFH10, EL08] that compute the marker positions in
body-centered coordinates, removing the global translation.

5.3 Likelihood experiments

Experiments were performed to test the tracking accuracy for different likelihood parame-
ters. The tracker uses annealed filtering with 200 particles for each one of the 5 layers. The
temporal prior employed is simple, it only adds a random noise in the particle states and
enforces anatomical joint limits [SBB10]. The errors reported here are from the walking
sequence of subject ‘S2’, and the camera ‘C2’ was used.

In the first experiment, the likelihood was based solely on silhouettes. The results are
plotted in Figure 5.3.1a (dashed red curve). Large errors are mainly due to two reasons.
First, after the legs are crossed, the tracking diverge from the correct value. This is
caused by left-right inversions which cannot be avoided in tracking that is based only on
silhouettes, as previously discussed. Second, most of the degrees of freedom are harder to
recover when the person walks towards (or away from) the camera — the error increases
around the 200th frame because of this. Overall, monocular trackers that are uniquely
based on silhouettes are not able to properly recover the human motion in this sequence.
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Similar results were obtained in [SBB10].
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(b) Mean errors for several values of α

Figure 5.3.1: Tracking errors for different likelihood parameters.

Next, the performance of the mixed likelihood, defined in equation (4.3.8), was mea-
sured. Appearance models were described by 16 × 16 histograms. The parameter α that
controls the influence of each function was determined empirically (α = 0.8). Figure 5.3.1a
shows the error curve (in blue) for tracking using this mixed likelihood. It can be seen that
the accuracy is significantly improved when appearance information is added.

We also tested the mixed likelihood for several values of α ranging from 0 to 1. For
each one of these values, the mean error of the whole sequence was computed (see Figure
5.3.1b). When only silhouette (α = 0.0) or only appearance (α = 1.0) is used, the error
is very large; good values for α lie between 0.4 and 0.8. This behavior was also observed
when we changed the temporal prior to the prior based on principal component analysis.

5.3.1 Independent vs. correlated channels

The appearance model that we proposed here is similar to the model proposed by Gall et al.
in [GBRS07]. However, it differs in two important aspects: (1) our approach is adapted for
monocular tracking because it checks the visibility of body parts in the sampling step; and
(2) in [GBRS07], the authors make the assumption, “for efficiency reasons”, that the image
channels are independent while we assume that the channels are correlated. We compared
tracking results using appearance models consisting of 16× 16 2D histograms (correlated
channels) with models that use two one-dimensional histograms (the number of bins was
K = 64 as proposed in [GBRS07]). Figure 5.3.2 shows the error curves. It is possible to
see from the plot that if the image channels are taken to be correlated, as we propose, the
appearance models are more discriminative, which improves tracking. Moreover, we found
that the algorithm takes roughly the same computation time to build these two kinds of
histograms.
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Figure 5.3.2: Tracking errors for histograms that assume that the image channels are
correlated and histograms that assume independent channels.

5.4 Temporal prior

Finally, a set of experiments was performed to evaluate tracking with the proposed tem-
poral prior (Section 4.4). In this case, we used a different camera, “C1”. For the state
propagation, the noise in the step parameter was defined as a Gaussian distribution with
zero mean and standard deviation σ = 0.01. The likelihood combines silhouette and ap-
pearance information (with α = 0.5). Figure 5.4.1 shows the error curve (in blue) for
our proposed prior compared with prior proposed in [SBB10] (dashed red curve). As our
method is a much stronger prior, less particles are needed: in our experiments we use only
50 particles and 3 layers. This is almost 7 times less than the number of particles used for
the simple prior experiment (200 with 5 layers).

Using our prior, the error remains under 200mm until the tracker loses the subject
around frame 250 (as opposed to the case where the simple prior is employed, in which the
tracker diverges around frame 160). These results show that we are able to greatly reduce
the number of particles while still maintaining low errors. Moreover, the pose trajectory
that is recovered when our motion model is applied seems more realistic since the poses
are reconstructed from a synthesized walking cycle.
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Figure 5.4.1: Error curves for tracking with our proposed prior (PCA-based) and the prior
in [SBB10](Simple).



Chapter 6

Conclusion and further work

Because many applications would benefit from a robust solution, monocular motion track-
ing has been an active field of research in the last decade. Currently, a robust solution
is only possible with strong activity-specific and subject-specific priors. In model-based
approaches, such as our own, tracking is often formulated within a Bayesian framework.
Therefore, a likelihood function and a temporal prior must be designed.

The two main contribution of this master thesis are:

1. A likelihood function that combines silhouette and appearance information. Our
appearance model is similar to the one proposed by Gall et al. in [GBRS07], but
with two important differences: (1) our approach is monocular and therefore we need
to cope with self-occlusions. They are handled using visibility maps; and (2) to build
histograms, we assume that image channels are correlated.

2. A temporal prior specific for walking sequences. Our method is based on PCA space
reduction of walking cycles, first proposed by Sidenbladh et al. in [SBF00]. At
initialization, the approach learns, from mocap data, a motion model that is able
to synthesize walking cycles. However, unlike [SBF00], the walking speed is not
included in the learning phase. Instead, we also track the walking speed. This makes
the tracking more robust to sequences that differ greatly from the ones in the training
dataset.

The algorithms have been experimentally evaluated on the HumanEva dataset [SB06].
Quantitative results have been presented which show that our methods can improve track-
ing. Additionally, for our temporal prior, we show that it can increase accuracy while
greatly reducing the computation cost. Nonetheless, the proposed motion model have
some limitations.

First, it is difficult to recover the walking phase when the person is moving towards
(or away from) the camera. This is caused by the increase of depth ambiguities in such
situations. To address this issue, we plan to include a dynamical noise in the estimation
of the step parameter. In cases where the uncertainty is big, the noise will be small to
prevent losing track of the person.
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Second, even if the model is able to work for different walking speeds, it is still too
limited with respect to the walking patterns used in the learning phase. For instance,
if the person is walking and waving its hand at the same time, the current model cannot
generalize to fully recover the arm configuration (unless a similar posture was in the training
dataset). Further work will to try to generalize the model to work in such situations.

Finally, experiments suggest that recovering the person’s global orientation is very
important for tracking, i.e. when it is not recovered properly, the system ends up losing
tracking in the subsequent frames. We are currently studying some alternatives to robustly
estimate the global orientation separately from tracking and then, using the result to guide
the search in the particle filter.
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