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ABSTRACT

One of the requirements when working with augmented objects in an Augmented
Reality system is to identify the pose of the target object with respect to the camera
with high accuracy and in real-time. The problem is of great importance in the field,
thus it has been widely studied and there is a variety of methods proposed.

The objective of the final year project described in this report was to study these
techniques in search for a robust solution to the problem of real-time tracking of a
textured plane for Augmented Reality purposes. We present the studies of several
state-of-the-art methods, separating them into two categories: tracking-by-detection
methods and recursive methods. We also show the results of experiments evaluating
these methods under conditions commonly encountered in practical applications.

Based on the experiments results, a hybrid system is proposed to combine
the complementary qualities of two methods, achieving real-time performance and
robustness to the challenges present in the 3D tracking of a textured plane. Finally,
a GPU implementation of the system is described which improves the performance
in more than three times compared to the CPU version – the final system runs at 30
frames per second.

Keywords: Augmented reality, 3D tracking, feature points, template-based track-
ing.



RESUMO

Rastreamento 3D para um Sistema de Realidade Aumentada

Um dos requisitos para se trabalhar com objetos aumentados em um sistema
de Realidade Aumentada é a identificação (precisa e em tempo real) da posição e
orientação do objeto alvo em relação à camera que captura a cena. Este problema
é de grande importancia na área, consequentemente ele é amplamente estudado e
diversos métodos já foram propostos.

Este trabalho de conclusão de curso tem por objetivo descrever o estudo realizado
de várias técnicas do estado da arte na procura de uma solução robusta para o
problema de rastreamento em tempo real de um objeto planar texturizado. Os
diferentes métodos encontrados na literatura são apresentados, separados em duas
categorias: rastreamento por detecção (tracking by detection) e métodos recursivos.
Também são mostrados resultados de experimentos para avaliação das técnicas em
condições comumente encontradas em aplicações reais de Realidade Aumentada.

Baseado nos experimentos realizados, um sistema hibrido é proposto para com-
binar as qualidades complementares de dois métodos, melhorando a robustez aos
desafios presentes no rastreamento 3D. Adicionalmente, uma implementação do
sistema em GPU é descrita, o que aumenta a performance do sistema em mais de
três vezes – o sistema final processa 30 imagens por segundo.

Palavras-chave: Realidade Aumentada, rastreamento 3D, pontos de interesse,
rastreamento baseado em template.
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1 INTRODUCTION

In order to insert augmented objects in a real scene, a meaningful correspondence
between the virtual objects and the real ones is required. To achieve this objective,
an estimate of the camera pose in relation with the world must be obtained to place
the virtual object in a “realistic” way. Besides that, in most AR applications, this
estimation technique must perform in real-time.

Tracking an object in a video sequence consists in retrieving its localization
continuously, despite motions of camera or motions of the object itself. As 3D
tracking is a very useful tool in many different fields such as Computer Vision and
Augmented Reality, it is a constant subject of research (Feng et al., 2008) and several
methods were developed. A comprehensive review of many of these techniques can
be found in (Lepetit and Fua, 2005).

The characteristics of the target object are very important to simplify the tracking.
Fiducials, also called landmarks or markers, are easy to track in real-time and, for this
reason, have been used for a long time in Augmented Reality applications. However,
their utilization requires engineering the environment, which is not always desired
and sometimes is even impossible (e.g. outdoor environments).

Therefore, the use of the object’s natural features is certainly better although it
makes the problem of tracking more challenging. To simplify the task, a 3D model
of the object is usually employed for tracking. In this work, a textured plane is the
target object. This kind of object is frequently used in AR systems to further reduce
complexity, obtaining higher frame rates.

Different approaches were developed to solve the problem of camera estimation,
depending on the type of object, the degrees of freedom of the object and camera, and
the application itself. All the methods described here can be divided in two categories.
The methods of the first category, called tracking-by-detection methods, try to find
the object in the current frame matching detected features with a pre-computed
database of the object features — in these techniques, each frame is processed
independently. By contrast, recursive methods use the previous information to search
the current object position and orientation around previous locations.

The objective of the final year project described in this report was to study the
state of the art techniques in search for a robust solution to the problem of real-time
tracking of a textured plane for Augmented Reality purposes. The only information
required is the texture of the object. Also, contrarily to SLAM (Simultaneous
Localization and Mapping) (Davison et al., 2007) and SfM (Structure from Motion)
methods, we are not interested in the mapping of a scene but rather the tracking of a
priori known model. We proposed a new method that combines the complementary
qualities of two of the studied tecnhiques. Finally, an efficent implementation of this
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hybrid approach on GPU is shown, which allows the system to run in real-time.

1.1 Project Details

This final year project took place at the Vision Research Department of THALES
Training & Simulation and is focused on vision based camera registration for AR
applications.

As there is a considerable number of tracking methods, the literature study of
the problem was a constant task in the period of the internship. For the same reason,
there was a phase of experimentation involving several methods; these experiments
were performed using MATLAB due to the possibility of fast development in this
programming language.

First, experiments using SIFT Matching (see Section 4.2.1) were performed. Then,
several recursive methods were researched to couple with the SIFT solution and
experiments were carried out to evaluate their tracking robustness. The first two
methods, KLT (shown in Section 3.2.1) and Particle Filtering (Section 3.2.2), did
not improve tracking.

Next, we studied the template-based methods (described in Section 3.2.3) that
showed good results for tracking planar objects. In this report we describe all the
methods that were studied in this project, emphasizing the Efficient Second-Order
Minimization (Section 3.2.3.3). This method, in our proposed method, was combined
with the SIFT Matching to achieve a higher tracking robustness.

After the state-of-the-art evaluation, we implemented this hybrid method on
C++ using the library OpenCV. Also, to increase performance we use the library
SIFT-GPU that implements the SIFT’s detection and matching on GPU. For the
ESM implementation, a GPU-based implementation was carried out to increase the
frame rate using the NVidia’s CUDA architecture.

Finally, the insertion of augmented objects using the OpenSceneGraph library
was done, resulting in a complete real-time tracking system for Augmented Reality.
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2 POSE CAMERA ESTIMATION PROBLEM IN
AUGMENTED REALITY

Augmented Reality (AR) is the term applied when an application mixes a vision
of the real world with superimposed virtual objects, in opposition to virtual reality
systems in which all the objects are virtual ones. Usually, the real world information
is provided through a camera and the virtual objects are placed in a manner that is
consistent to the scene that is observed. The Figure 2.1 shows an example of an AR
application, consisting of an “augmented” virtual teapot at the top of a book’s cover.

Figure 2.1: Example of an AR application. To “augment” the virtual teapot, the
camera pose must be obtained

It is obvious that, in order to insert virtual objects in respect with the real scene,
the camera pose in relation to the real world must be obtained; this problem is
known for Pose Camera Estimation. This problem is inherently related with the
geometry present in the image formation of the camera. In this work, we will be
dealing with the common pinhole camera model that uses a perspective projection
as shown by Figure 2.2.

The camera pose in relation with the object coordinate system can be retrieved
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by finding a correspondence between the 3D object points M = [X, Y, Z]T and its
2D projections m = [X, Y ]T in the image plane.

Figure 2.2: Image formation geometry in the pinhole camera model

Described with matrices, the pinhole camera model is represented in equation
(2.1).

sm′ = PM′, (2.1)

where s is a scale factor, m′ and M′ are the homogeneous coordinates of m and M,
respectively. Thus, the objective of tracking is to estimate the projection matrix P
along the frame sequence. The matrix P can be decomposed as:

P = K[R|t]

where K is intrinsic calibration matrix composed of camera internal parameters,
such as:

K =

αx s u0

0 αy v0

0 0 1

 . (2.2)

The values of K are such that:

• αx and αy are the scale factors in the image x and y axes — these values are
proportional to the focal length of the camera.

• u0 and v0 are the coordinates of the principal point P that is the intersection
of the principal axis and the image plane, as indicated in Figure 2.2.
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• s is a parameter regarding the skewness of the two images axes. Its value is
nonzero only if the axes are not perpendicular.

The matrix K is constant for the video sequence, assuming that the camera
zoom parameters do not change. Moreover, its values can be estimated in an offline
procedure, as described in (Zhang, 2000), for instance. In the context of this report
K is assumed to be known.

The interest of the methods described in the following sections is to find the
extrinsic parameters in equation (2.1), i.e. the 3×3 matrix rotation R and the
translation vector t. Formally, the matrix [R|t], called external parameters matrix,
is the Euclidean transformation from the world coordinate system to the camera
coordinate system. And, for tracking applications, R and t represent the target
object’s position and orientation with respect to the camera.

The kind of object that we are interested in this work are textured planar objects,
which simplifies the task of estimating the camera pose. If we consider 3D points lying
on a plane with Z = 0, the projection matrix H that maps a point M = [X, Y, 0]T

can be recovered by writing

m′ = PM′

= K
[
r1 r2 r3 t

] 
X
Y
0
1


= K

[
r1 r2 t

] XY
1


= HM′ (2.3)

where r1, r2 and r3 respectively are the first, second and third column of the rotation
matrix R. Notice that, by abuse of notation, we use again M′ denoting a point laying
on the object, but in this case M′ = [X, Y, 1]T, i.e. it contains the homogeneous
coordinates of a 2D-point since the Z coordinate is always equal to zero.

Several tracking methods focus on estimating the homography H that is a 3×3
matrix, to later recover the rotation and translation. The problem of decomposing
an homography in R and t is known as Homography Decomposition and it is well
addressed in (Malis and Vargas, 2007). The method used in our work is described in
(Zhang, 2000).
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3 STATE OF THE ART METHODS

The presentation of state-of-the-art techniques for 3D tracking in this report
is separated in two main categories: tracking-by-detection methods and recursive
methods. The main difference between them is that methods in the first category
track each frame separately, i.e., no previous knowledge of the object trajectory is
used.

The methods in the latter category use the poses obtained in previous time
steps to estimate the object position and orientation in the current frame. Such
an approach can greatly simplify the tracking, but it has its problems. Notably,
if something goes wrong between two consecutive frames, e.g., due to a complete
occlusion or a large displacement of the target object, the system might lose the
tracking object. Moreover, manual initialization is often required in these techniques.

The popularity of the ARToolKit (Kato et al., 2000) comes from the fact that
the system uses a tracking-by-detection approach to increase robustness. However,
the toolkit requires the engineering of the environment with fiducial markers. One
of the current challenges in Augmented Reality is to achieve the same performance
level of the ARToolkit relying only on the object’s natural features.

In the next two sections, both families of methods are presented. In Section 4,
experiments carried out to evaluate their performances are shown.

3.1 Tracking-by-detection Methods

Tracking-by-detection approaches estimate the camera pose by detecting a known
texture (or features) in each frame individually, without prior knowledge of the pose.
In the studied methods, the natural features searched in a frame are called interest
points which are points lying on the object and stable under image changes, i.e., it is
possible to recover their positions in each frame to estimate the object pose.

Most of the methods of this class can be briefly described in two main steps:

• First, in an offline step, a database of the object’s interest points is built from
stored images (in some cases, only one image is enough). Several methods
for detection and description of these natural features have been proposed
(Mikolajczyk and Schmid, 2005; Lowe, 1999). A good comparison of different
descriptors can be found in the work of Mikolajczyk and Schmid (Mikolajczyk
and Schmid, 2005).

• Next, for each frame, interest points are detected in the whole image and
then, matched against the database. From these correspondences between 2D



15

points, an estimation of the homography is obtained — for this, at least four
correspondences must be found.

Usually, a minimization of the back-projection errors is done to compute the
homography and a robust estimator, such as RANSAC (Fischler and Bolles,
1981), can be used to eliminate spurious matches.

In addition to the steps described above, to reduce jitter and enforce temporal
consistency, a motion model can be included to impose temporal continuity constraints
across frames.

Since the methods are very similar in their basis, the method for detecting and
describing interest points is directly related with the tracker performance. In our
experiments, which are described in section 4.2.1, we use the Scale Invariant Feature
Transform (SIFT) (Lowe, 1999) for detect and represent interest points and no
motion model was incorporated.

3.1.1 SIFT Features

Lowe proposed a feature point detection and descriptor called SIFT (Scale
Invariant Feature Transform) (Lowe, 1999) that has been shown to be very efficient
(Mikolajczyk and Schmid, 2005) and has been successfully applied to 3D tracking
(Skrypnyk and Lowe, 2004).

The method to detect and describe SIFT features consists in several steps:

• SIFT keypoints are the identified feature points locations in the scale space
of the image that are maxima or minima of the difference-of-Gaussian (DoG)
function.

• A filter that excludes points within a region of low contrast is applied to the
points obtained in the previous step.

• Finally, the image gradients in the local region of each keypoint are encoded
using histograms of oriented gradients (HOGs) to provide rotation invariance.

An example of detection of SIFT points is shown in Figure 3.1.

Figure 3.1: An example of detection of SIFT points in a texture (431 points were
detected)

3.2 Recursive Tracking Methods

Instead of trying to detect the object in each frame, traditional tracking methods
search for the object around their previous positions. This approach greatly simplifies
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the task of tracking, even if an initialization of the camera pose must be provided
to start the system. The methods presented in this section compute recursively
the camera trajectory using previous computed information such as homographies,
positions of the object points or camera poses.

3.2.1 Kanade-Lucas-Tomasi Feature Tracker

The KLT (Kanade-Lucas-Tomasi) (Lucas and Kanade, 1981; Shi and Tomasi,
1993) tracker detects interest points in the first frame and defines a small window
around each point. Then, in the subsequent frames, these windows are searched using
affine transformations or only translations. The inter-frame movement is assumed to
be small and the image brightness is assumed to be constant.

The translation of a window between the time t and t + τ defined by ξ and η
must satisfies the following.

I(x, y, t+ τ) = I(x− ξ, y − η, t). (3.1)

To compute this movement, generally, the displacement d = [ξ, η] is found by
minimizing the residual error in a given window of pixels W :∫

W

(I(x, t+ τ)− I(x− d, t))wdx, (3.2)

where w is a weighting function that can be, for instance, set to 1 for all pixels or a
Gaussian-like function that emphasizes the central region of the window. Using the
Taylor expansion of I(x− d, t), we can solve equation (3.2) for d:[∑

W

GTG

]
d =

∑
W

GTI(x, τ) (3.3)

where G = [ ∂I
∂x
, ∂I
∂y

]. This solution is based on the Lucas-Kanade algorithm, which is
described in more details in section 3.2.3.

To detect feature points, Shi et al. propose in (Shi and Tomasi, 1993) that good
features are those that can be tracked well, within a mathematical definition. Thus,
the extraction of features depends on the tracking method that is used.

In the KLT method, features are selected by finding image points in which the
eigenvalues (λ1 and λ2) of GTG, computed in their windows, is above a threshold εk.

min(λ1, λ2) > εk (3.4)

3.2.2 Bayesian Tracking and Particle Filtering

Most of the Bayesian tracking methods aim to estimate the probability density
function of states in the space of possible camera poses. Formulated in this fashion,
they follow a top-down approach — not tracking points, as in other methods, but
directly estimating and evaluating the camera pose.

Kalman filters (Welch and Bishop, 1995) have been used to estimate the local-
ization with good results (Kragic and Kyrki, 2006), but they can work only with
Gaussian distributions. Consequently, Particle Filtering is gaining interest in recent
years for 3D tracking because it allows the use of more general distributions.

Particle filtering has been used to estimate the camera pose (Pupilli and Calway,
2006) with robustness and in real-time with or without the object 3D model —
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we analyzed the former category. The problem in the second category consists in
tracking the camera pose and simultaneously mapping the environment (Davison
et al., 2007), known as SLAM (Simultaneous Localization and Mapping).

The purpose of a particle filter is to approximate a posterior density function
with samples, called particles. To solve the problem of tracking, the posterior density
function can be expressed in the general form of the recursive Bayes filter:

p(xk|y1:k, Z) =
p(yk|xk, Z)p(xk|y1:k−1)

p(yk|y1:k−1)
(3.5)

where xk is the state vector (camera motion) at time k, y1:k are the observations
y from the time t = 1 until t = k and Z is a set of 3D points that represents
the structure of the 3D model to be track. The reader interested in more details
in Bayesian filters can find them in (Haug, 2005). In practice, each particle pi
corresponds to a possible motion of the camera pose and its weight is associated
with the trustiness that the particle corresponds to the real camera motion.

The set of N particles pki at the time k, denoted Pk, gives an estimate for the
camera motion X̂k as follows:

X̂k = E(Xk|Y1:k) =
N∑
i=1

wk
i x

k
i ,

assuming that the weights are normalized, such that
∑N

i=1wi = 1.

3.2.2.1 State Model

A particle pki is composed of the motion estimates of the rotation Rk
i and trans-

lation tki . Rotations are modeled using unit quaternions (Altmann, 1986) for per-
formance improvement and simplicity of manipulation. Therefore, the state model
vector x is represented by seven values:

x = [qw, qx, qv, qz, tx, ty, tz] ,

where tx, ty, tz represent a translation and qw, qx, qv, qz are the quaternion values.

3.2.2.2 Motion Model

The motion model describes the changes in time of the particles states. It is
difficult to assume any kind of movement for the camera pose a priori, so the main
approach is to “move” the particles according to a random walk (Tao et al., 2009;
Pupilli and Calway, 2005). Thus, the evolution of a particle is modeled by a uniform
distribution.

p(xk|xk−1) = U(xk−1 − v,xk−1 + v),

where v represents the uncertainty about the incremental motion. The value of the
parameter v is very important for the system because, if too large, it may cause the
divergence of particles (meaning poor estimate) and, if too small, the filter might
not respond well in the presence of rapid movements.

To cope with these problems, in (Marimon and Ebrahimi, 2007) and (Tao et al.,
2009), the authors proposed the introduction of an adaptive state transition model
that adjust the value of v dynamically, in proportion to the difference of the last
two estimates.
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3.2.2.3 Measurement Model

The most important component of a particle filter is the measurement model
that must be able to evaluate the particles in a consistent manner, distributing high
weights for particles with good poses and low values for particles with bad ones.

Several likelihood functions have been proposed (Tao et al., 2009; Pupilli and
Calway, 2005; Ababsa and Mallem, 2011; Marimon and Ebrahimi, 2007). These
approaches only differ in their sets of observation points used to compute the
likelihood function p(yk|xk, Z).

In (Pupilli and Calway, 2005) and (Marimon and Ebrahimi, 2007), the authors
propose correlation between pre-computed templates and the current frame as the
set of observations. The procedure runs as follows. In an offline stage, a template
is associated with each detected feature point and, for each frame, a field of cross
correlation with the current image is computed. The set of observations is defined as
the points in this field that are above a threshold.

Another approach, presented in (Tao et al., 2009), is to use the matching of
natural features, using a reduced version of the Scale Invariant Feature Transform
(SIFT (Lowe, 1999)). Thus, the set of observations are feature points that were
matched with a reference frame (usually this is a picture of the object or a region in
the first frame).

All the techniques described above evaluate the likelihood function in the same
fashion. For each particle, the projection of a 3D feature point zi, denoted C(zi,xk),
is computed according to the particle’s estimate of rotation and translation. Then,
the likelihood of a particle is proportional to the numbers of feature points zi whose
projections are close enough to at least one observation point, i.e.

p(yk|xk, Z) ∝ exp

(
M∑
i=1

∏
u∈yki

d(u, zi,xk)

)
(3.6)

where M is the number of feature points and d(u, zi,xk) is a function that defines if
the projection C(zi,xk) is an inlier with respect to the observation point u:

d(u, zi,xk) =

{
1 if ‖ u− C(zi,xk) ‖< εd
0 otherwise.

(3.7)

3.2.3 Template Matching

Image alignment is used to register a 2D image template to an image using
a deformation. When used to track objects, rather than tracking feature points,
template-based techniques track the whole object, minimizing the sum of squared
distances between the template and the current frame intensities at several x reference
locations.

If the target object is planar, each frame showing the object can be deformed using
a homography, in such a way that the object, in the back-warped image, is viewed with
the same pose as in the reference frame. To approximate this optimal homography,
template matching methods iteratively search, using the current homography estimate,
the parameters of a homography that minimizes the error between the template and
the current frame warped-back.

Since the seminal work of Lucas and Kanade (Lucas and Kanade, 1981) that
presented an iterative image registration technique, several modifications to the



19

original algorithm have been proposed (Baker and Matthews, 2004; Malis, 2004).
Although the original form of the algorithm was very computationally expensive,
recent formulations made possible its use for real-time tracking (Benhimane and
Malis, 2007; Jurie and Dhome, 2001).

In the following section, the original Lucas-Kanade algorithm is presented. Next,
sections 3.2.3.2 and 3.2.3.3 show two alternative formulations for the template
matching that are more efficient and section 4.2.4 presents some experiments involving
these two techniques.

3.2.3.1 Lucas-Kanade Algorithm

The objective of the Lucas-Kanade algorithm (Lucas and Kanade, 1981) is to
find the parameters p = [p1, p2, . . . pn]T of a function W that warps the image I onto
the coordinate frame of a template T , minimizing the following equation.

O(p) =
∑
x

[I(W (x;p))− T (x)]2 , (3.8)

where x are pixel locations in the template. Note that warping back the image I to
compute I(W (x;p)) requires interpolating the image I at the sub-pixels locations
W (x;p).

In order to simplify the computation, the algorithm assumes that a current
estimate for p is known, then it iteratively minimizes the equation (3.10) with
respect to an increment ∆p in the parameters. The update of p in the Lucas-Kanade
algorithm is additive:

p← p + ∆p. (3.9)

The equation (3.8) is rewritten to comport this alteration:∑
x

[I(W (x;p + ∆p))− T (x)]2 . (3.10)

The algorithm iterates until the norm of the increments of p are below a threshold;
i.e. ‖∆p‖ ≤ εc.

The solution of the equation (3.10) is a nonlinear optimization task since normally,
the image I is nonlinear with respect to x. Hence, the equation (3.10) is linearized
by performing a first-order Taylor expansion that, for a generic function f(x), can
be described as follows.

f(x+ ∆x) ≈ f(x) + f ′(x)∆x (3.11)

In equation (3.10), the term I(W (x;p + ∆p)) is linearized resulting in the
expression:

∑
x

[
I(W (x;p)) +∇I ∂W

∂p
∆p− T (x)

]2

, (3.12)

where ∇I represents the gradient ( ∂I
∂x
, ∂I
∂y

) of the image I evaluated at W (x;p) —
i.e. ∇I is computed in the coordinate frame of I and then warped back using the
current parameters p. The term ∂W

∂p
is called the Jacobian of the warp W (x;p) =

[Wx(x;p),Wy(x;p)]T defined as follows:
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∂W

∂p
=

∂Wx

∂p1
∂Wx

∂p2
· · · ∂Wx

∂pn

∂Wy

∂p1

∂Wy

∂p2
· · · ∂Wy

∂pn

 . (3.13)

This Jacobian can be constant for simple warps, such as affine transformations
and translations. For other warps, the parametrization of W is very important in
order to simplify the computation task.

To minimize the expression (3.12), we take its partial derivative with respect
to ∆p and set it equal to zero. Then, solving this equation for ∆p, results in the
following expression:

∆p = H−1
∑
x

[
∇I ∂W

∂p

]T
[T (x)− I(W (x;p))] , (3.14)

where H is the Hessian matrix approximate by the Gaussian-Newton method:

H =
∑
x

[
∇I ∂W

∂p

]T [
∇I ∂W

∂p

]
. (3.15)

The Lucas-Kanade algorithm iterates using equations (3.14) and (3.9) to ap-
proximate the minimization of equation (3.10). The derivation described above is
not the only possible solution to approximate the minimization equation (3.8), and
several methods have been proposed; a good comparison can be found in (Baker and
Matthews, 2004). The next section will present one of these approaches, that it was
proven to be empirically equivalent (in terms of convergence) to the Lucas-Kanade
algorithm.

3.2.3.2 Inverse Compositional

In the Lucas-Kanade algorithm, the Jacobian ∂W
∂p

and the gradient ∇I generally
must be computed at each iteration, because they depend on the current estimate
of p; in the case of ∂W

∂p
, as mentioned, it can be constant for simple deformations.

The Inverse Compositional algorithm (IC) (Baker and Matthews, 2001) tries to
reformulate the original minimization function with the intention of precomputing
some of the values to achieve more computational efficiency.

The first difference of the Inverse Compositional algorithm to the original defini-
tion is the compositional aspect of the parameters update. Rather than an additive
update, like in equation (3.9), the update is defined by:

W (x;p)← W (x;p) ◦W (x; ∆p)−1. (3.16)

Thus, together with the parametrization of the warp W , it is necessary to provide
to the algorithm a rule for the function composition.

The inversion of the warp W (x; ∆p) is due to the inverse characteristic of
the algorithm, that switches the role of the image and the template. Then, the
minimization function (3.10) can be rewritten.

O(∆p) =
∑
x

[T (W (x; ∆p))− I(W (x;p))]2 (3.17)
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With these two modifications in the original proposition, it is possible to pre-
compute the Hessian H matrix and the Jacobian ∂W

∂p
as the following derivations

show.
First, we can apply a first-order Taylor expansion on equation (3.17) to obtain:

∑
x

[
T (W (x;0)) +∇T ∂W

∂p
∆p− I(W (x;p))

]2

. (3.18)

Assuming that the warp W (x;0) is the identity warp, the solution for ∆p is:

∆p = H−1
∑
x

[
∇T ∂W

∂p

]T
[I(W (x;p))− T (x)] (3.19)

where H is the matrix defined as follows:

H =
∑
x

[
∇T ∂W

∂p

]T [
∇T ∂W

∂p

]
. (3.20)

This matrix can be pre-computed and used across iterations since there is nothing
in the matrix that depends on p; also, the Jacobian ∂W

∂p
is evaluated at (x;0) and

∇T is the gradient of the original template, thus they can be precomputed too.
Compared with the Lucas-Kanade algorithm, the IC is more computationally

efficient and can be use for real-time tracking, but it still relies on a first-order
approximation of the minimization function. The objective of the algorithm described
in the next section is to perform a second-order approximation while maintaining a
high computational efficiency.

3.2.3.3 Efficient Second-Order Minimization

The Efficient Second-Order Minimization algorithm (ESM) (Malis, 2004) performs
a second-order approximation of the minimization function that reduces the number
of iterations to converge and, given a suitable parameterization, conserves the same
computation complexity as standard first-order approaches.

With the intent to compare the ESM method with the previous ones, we reformu-
late the minimization problem. For an image I with q pixels, we can define a (q × 1)
vector y(∆p) of the image differences, such as:

y(∆p) =
[
y1(∆p) y2(∆p) . . . yq(∆p)

]T
, (3.21)

where

yi(∆p) = I(W (W (xi; ∆p);p))− T (xi).

Note that p are the assumed known approximations for the W parameters. Next,
to linearize the vector y(∆p), a second order Taylor approximation on y(∆p) is
performed:

y(∆p) ≈ y(0) + J(0)∆p +
1

2
M(0,∆p)∆p. (3.22)

where the (q × n) Jacobian matrix J(p) and the (q × n) matrix M(pa,pb) are
such as:
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J(p) = ∇py(p) =



∂y1(p)
∂p1

∂y1(p)
∂p2

· · · ∂y1(p)
∂pn

∂y2(p)
∂p1

∂y2(p)
∂p2

· · · ∂y2(p)
∂pn

...
...

...

∂yq(p)

∂p1

∂yq(p)

∂p2
· · · ∂yq(p)

∂pn


(3.23)

and

M(pa,pb) = ∇pa(J(pa)pb) =
[
∂2y1(pa)
∂pa

2 pb
∂2y2(pa)
∂pa

2 pb · · · ∂2yq(pa)

∂pa
2 pb

]
.

In order to compute M(pa,pb) it is necessary to obtain the (8 × 8) Hessian
matrices, one for each pixel. As in the previous methods, we use a sum of squared
distances to minimize the error vector.

f(∆p) =
1

2
‖y(p) + J(p)∆p +

1

2
M(0,∆p)∆p‖2 (3.24)

A necessary condition for finding the global or the local minimum is that the f
derivate in relation with ∆p must be equal to zero. This operation is performed
in the equation (3.24); then, the value of ∆p can be estimate iteratively (using the
standard Newton minimization):

∆p = −S−1J(p)Ty(p),

where the matrix S depends on the Hessian matrices and must be invertible:

S = J(0)TJ(0) +

q∑
i=0

∂2yi(p)

∂p2
yi(p).

The two previous methods for template matching presented can be written in
the same form above for comparison. For the Lucas-Kanade method, the error
vector y can be formulated as the matrix of the individuals errors yi such that
∀i ∈ {1, 2, . . . , q}:

yi(∆p) = I(W (xi;p + ∆p))− T (xi).

Then, the Jacobian J , using the definition in (3.23) is:

J(p) = ∇py(p) = ∇I ∂W
∂p

.

It can be seen that the Lucas-Kanade algorithm compute a first-order approxi-
mation of the matrix S:

S ≈ J(p)TJ(p).

In the Inverse Compositional method, the error function yi is extracted from
equation (3.17):

yi(∆p) = I(W (xi;p + ∆p))− T (xi).
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And the Jacobian J(p) is defined as:

J(p) = ∇py(p) = ∇T ∂W
∂p

.

As shown, the term ∇T ∂W
∂p

could be precomputed, so the approximation of S in
this case is constant:

S ≈ Ĵ

First-order approximations of S simplify the computation task of the minimization,
because does not involve the process of the Hessian matrices. The main idea of the
ESM method is to perform a second-order approximation without computing the
Hessian matrices. This is done by approximating the matrix M(pa,pb) in equation
(3.22) using an first-order Taylor series approximation of J(∆p) about 0:

J(∆p) ≈ J(0) +M(0,∆p)

M(0,∆p) ≈ J(∆p)− J(p).

Then, it becomes possible link the above equation with the error vector equation
(3.22):

y(∆p) ≈ y(0) + J(0)∆p +
1

2
(J(∆p)− J(0))∆p

y(∆p) ≈ y(0) +
1

2
(J(0) + J(∆p))∆p. (3.25)

In (Benhimane and Malis, 2007), the authors demonstrate that the sum of
Jacobians J(0) + J(∆p), if the deformation is a homography, can be rewritten as
follows.

Jesm = J(0) + J(∆p) = (JI + JT )JW (JH(0) + JH(∆p)), (3.26)

where JI depends on the gradient of the warped image, JT depends on the gradient
of the template, JW is computed using the pixels points in the template and JH
depends on the homography parametrization.

In the original application of ESM to homography computation (Benhimane and
Malis, 2007), it was shown that if we parametrize the computation using Lie Algebra
we can state that JH(0) = JH(∆p). This is very important for real-time applications,
because in this formulation, the only Jacobian in expression (3.26) that must be
computed at each iteration is JI . Formulate with Lie Algebra, the homography
update is done using the matrix exponential function:

H ← HeA(∆(p)),

where A is a basis of the Lie Algebra. More information about Lie Algebra applied
to homography parametrization can be found in (Benhimane and Malis, 2007).

Using the expression (3.26), the cost function (3.24) can be rewritten.

f(∆p) =
1

2
‖y(0) + Jesm(∆p)‖2
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Solving for ∆p results in:

∆p = J+
esmy(0).

where J+
esm is the Moore-Penrose pseudo-inverse of Jesm. Since the number of rows

is greater than the number of columns in this case, the pseudo-inverse is defined as:

J+
esm = (JT

esmJesm)−1JT
esm

The complete ESM algorithm is shown in Algorithm 1 in pseudo code format.

Algorithm 1 ESM tracking method

Require: T : template image; threshold εc; kmax : maximum number of iterations;
I : current image; Ĥ : initial estimate of homography;

1: Pre-compute JW and JH as in (Benhimane and Malis, 2007)
2: Calculate the gradient JT using a Sobel filter
3: done← false
4: H ← Ĥ
5: k ← 0
6: while (done = false ) and (k < kmax) do
7: k ← k + 1
8: Calculate IW warping the current image I with H
9: Calculate the gradient JI using the image IW (Sobel filter)

10: Jesm ← 2(JI + JT )JWJH
11: y← IT − IW [y is the current error]
12: ∆p← (JT

esmJesm)−1JT
esmy

13: H ← HeA(∆p)

14: if ‖∆p‖ < εc then
15: done← true
16: end if
17: end while
18: return H

Since its formulation, the ESM algorithm has also been adapted to work in
more complex tracking situations such as the presence of large illumination changes
(Silveira and Malis, 2007), blur (Park et al., 2009) and the tracking of deformable
objects (Silveira and Malis, 2010).
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4 EXPERIMENTS WITH STATE OF THE ART
METHODS

4.1 Dataset Used in the Experiments

To compare the different methods, we performed experiments with the same
dataset, consisting of a video with around 900 frames of the target object — a planar
object with the texture of Figure 4.1. The frame sequence displays several challenges
for the tracking, commonly encountered in a real life scenario, such as: rotations,
partial occlusions, large displacements and severe changes in viewing angles and
scale. Examples of these can be seen in Figure 4.2.

Figure 4.1: The texture present in the target object used in the dataset

As the ground truth of the object pose is not known, to estimate the error of
localization, we first warp the image using the inverse homography or transformation
matrix provided by the tracking method and second, compare this image with the
original template employing a Normalized Cross Correlation (NCC):

NCC(T, Iw) =

∑
x(T (x)− µt)(Iw(x)− µw)

q2σtσw
, (4.1)

where µt and µw are the mean pixels intensities of the template T and back-warped
image Iw and σt and σw their standard deviations; q is the total number of pixels.

Notice that, when the object is seen in a challenging condition, such as those
when an occlusion happens or a frame has too much blur, the NCC coefficient cannot
be very high even if the tracking is very accurate. Nonetheless, the NCC can provide
important information about the accuracy of the pose and has been used in tracking
experiments (Park et al., 2009).
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(a) Frame #256 — Oblique viewing an-
gle

(b) Frame #362 — Partial occlusion

(c) Frame #676 — Scale change (d) Frame #799 — Beginning of a large
displacement

Figure 4.2: Examples of frames in the dataset used in the experiments

4.2 Experiments

4.2.1 SIFT Features

In the SIFT-based system, the points detected in the template image (as shown
in Figure 3.1) are stored and for each frame, SIFT points are detected and matched,
using a Euclidean distance between two descriptors. Given these correspondences,
an homography is estimated using RANSAC estimator to remove spurious matches.

We ran some tests to evaluate the tracking performance of this method; two
examples are shown in the Figure 4.3. To better evaluate the performance of the
tracking system we also tested the method using our dataset — the results are shown
in Figure 4.4.

The method can produce good poses (in terms of a NCC-based metric) under
several difficult circumstances, as it can be seen in Figure 4.3a and in a large part of
the dataset experiment shown in Figure 4.4. However, in the presence of blur due to
fast movements the number of matches can be reduced, resulting a poor homography
estimate, as shown in Figure 4.3b. Furthermore, other problems can be noticed if we
analyze the NCC coefficients in Figure 4.4: the tracking system fails with frames
that present severely oblique viewing angles and when the object is too far from
the camera — in the latter case, the number of correspondences is reduced, causing
jitter. Another drawback of this system, for Augmented Reality applications, is the
high computational cost. However, a GPU optimization of the SIFT’s detection and
matching is proposed in (Sinha et al., 2006) which enables real-time performance.

Despite these problems, tracking-by-detection techniques have the capacity to
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(a) Good homography estimate

(b) Poor homography estimate due to blur

Figure 4.3: Tracking by detection using SIFT features
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Figure 4.4: SIFT-based method performance in the test dataset

recover after they lost the object’s position, which is exemplified in the Figure 4.4
that shows the system recovery after a large displacement.

There are several approaches that combine tracking-by-detection methods and
recursive tracking (e.g. (Ladikos et al., 2007)) to increase performance and/or
estimation accuracy. Another improvement is to add a motion model in order to
reduce jitter.
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4.2.2 Kanade-Lucas-Tomasi Feature Tracker

To analyze the performance of a KLT tracker, we performed a test by tracking
the detected points laying on the object in the first frame. The pixels inside a
given window are weighted as proposed in (Schreiber, 2007) which has the effect of
excluding pixels that show resulted in large residual errors in previous frames.

To compute the homography of the plane, RANSAC was used to remove outliers
and no reinitialization of the interest points was made, with the intention to examine
the error accumulation.

As we can see in Figure 4.5, the method progressively loses track of several
features points due to fast motion and error accumulation. The experiment using
the test dataset shows the same results, as it can be seen in Figure 4.6.

(a) Frame #20 (b) Frame #40 (c) Frame #60 (d) Frame #80

Figure 4.5: Lost of track using a KLT tracker
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Figure 4.6: Performance of KLT in the test dataset

Despite the fact that the KLT tracker loses track easily when fast movements or
occlusions occur, if the displacement between two frames remains small, the KLT
tracker can be used in real-time. Due to its simplicity and good performance, hybrid
approaches has been proposed (e.g. (Choi et al., 2008)) to improve tracking results.
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4.2.3 Bayesian Tracking

After the study of the different types of measurement, SIFT matches were used
as the set of observation points responsible for evaluating the pose hypotheses. The
experiment of the particle filter in the dataset is shown in Figure 4.7. For performance
reasons, the number of particles used was 300. Because of the random characteristic
of the algorithm, the test was repeated 5 times and the plot shows the average for
these executions.
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Figure 4.7: Particle filter performance in the test dataset

The results using the particle filter present the same pattern as the tracking
using SIFT matches. Indeed, this correlation was already expected because the
filter uses SIFT matches to evaluate particles. It is also clear from this experiment
that a particle filter using only this kind of features cannot account for situations
when few matches are found (e.g. when the object is observed from a oblique angle).
Moreover, particle filters introduce a great deal of jitter due to the random nature of
the algorithm which is further increased by the reduced number of particles used in
the experiment.

To achieve better results, complementary methods can be included in the mea-
surement model, so that, when one information is not available, other method can
provide useful information to evaluate the particles. Despite that, it is hard to
achieve real-time performance with particle filters without compromising the method
accuracy. This is a prohibitive aspect of this method for our application because,
in order to cope with fast movements, a large number of particles is required. This
means that, when using particle filters, a choice between accuracy and real-time
performance must be made. Because of that, particle filters are more popular in Com-
puter Vision in problems that can be solved offline, such as Human Pose Estimation
(Deutscher and Reid, 2005).
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4.2.4 Template Matching

Experiments to evaluate two template-based methods, IC and ESM, were carried
out using the same test dataset as for the other methods. The version of the ESM
algorithm implemented for the tests was the ESM-Blur (Park et al., 2009), that
modifies the original proposition by multiplying the jacobian of the template JT ,
in equation (3.26), by a factor (we used 0.5). As the name suggests, this small
modification makes the method more robust in the presence of blurry images.

Typically, template matching algorithms have two parameters: the threshold εc
that defines when the method converged, i.e, if the norm in the parameters update is
less or equal to εc, the computation for the frame is finished; additionally, a value for
the maximum number of iterations allowed is fixed to determine when the solution
did not converged. For the experiments performed, the initialization was done using
SIFT (Lowe, 1999) matches to obtain an initial homography, εc = 0.01 and the
maximum number of iterations was fixed to 50. The results are presented in Figure
4.8.
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Figure 4.8: IC and ESM methods performances in the test dataset.

The results show us that the ESM method is more accurate for almost the whole
sequence. These results arise from the fact that, as discussed, the ESM approximates
the minimization function using a second-order approximation instead of using first-
order approximations (as in the case of IC). It is possible to observe from the Figure
4.8 that around the frame #150 the IC method almost loses track of the object while
the ESM maintain a good performace. After this, the IC method recovers a good
localization, but this is not always the case. Another experiment, using a smaller
dataset (consisting mainly of rapid motions) is shown in Figure 4.9 where the IC is
unable to recover a good localization after loosing track around the 60th frame.

The number of iterations necessary for convergence was also measured for both
methods. The results for the test dataset are shown in Figure 4.10. The ESM
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Figure 4.9: IC loses track due to fast motions

converges in less iterations than first-order algorithms, even though a single iteration
can be more computationally expensive.
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Figure 4.10: Number of iterations to converge: due to the ESM second-order
characteristic, the algorithm takes much less iterations to converge as oppose to
first-order algorithms such as IC

Despite the good results, template-based methods are unable to recover the
tracking after a large displacement, as it can be seen in Figure 4.8. This suggests
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that, in order to obtain a robust system, a reinitialization scheme must be put in
place to recover a good pose when the tracking is lost.

4.3 Discussion

Tracking is one of the most important tasks in many fields as Augmented Reality,
Visual Servoing, Surveillance, etc. Therefore, several 3D tracking methods can be
found in the literature and the subject continues to be researched. However, the
problem of robustly tracking an object using only its natural features is still an open
problem.

To summarize the study of the several methods presented, Table 4.1 shows the
performances of each method in the presence of constraints observed in real life
applications.

Method × Real-time Scale Oblique Large Blur Occlusion
Constraint viewing displacements

SIFT Matching + + – + – +
KLT + = – – – –
Particle Filter (SIFT) – + = = = +
IC (Template-based) + = = – = =
ESM (Template-based) + + + – + =

Table 4.1: Comparison of the studied tracking methods for planar objects

Table 4.1 shows that, on one hand, all the recursive methods that were tested
cannot work well with large displacements, as discussed before. On the other hand,
the tracking-by-detection based on SIFT matches is not robust under all constraints,
giving poor estimates when the object is viewed with severely oblique angle, frames
present blur or the camera is too far from the object. For a qualitative evaluation,
Figure 4.11 shows several frames of the test dataset with the homography given by
the different methods.
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Figure 4.11: Example frames of the dataset showing tracking results for several of
the studied methods
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5 PROPOSED SYSTEM AND IMPLEMENTA-
TION

Analyzing again the Table 4.1, it can be noticed that the SIFT Matching is the
only technique that can cope in the presence of large displacements that commonly
happen in real world scenarios. This comes with no surprise given that the technique
is the only tracking-by-detection method in the comparison: the independence of the
process for each frame is the key to deal with large displacements.

Recursive methods lose track of the object in the presence of large displacements
because they assume that displacements will remain small. Moreover, template-based
methods work minimizing a function that can result a local minimum instead of the
global one.

These results indicate that a robust solution for the tracking might be a hybrid
approach, using the complementary qualities of two methods. In this section, we
propose a hybrid system using SIFT matching and ESM tracking.

5.1 Proposed System

To achieve a good performance, hybrid approaches were proposed (Ladikos et al.,
2007) to combine the complementary qualities of two (or more) families of tracking
methods. Our approach is similar to (Ladikos et al., 2007) and the sense that it
also proposes the union of a recursive method with a tracking-by-detection method.
However, our choice of methods is different from their choice. We combine two of the
studied methods: ESM-Blur (Park et al., 2009) (recursive) and the SIFT Matching
(Skrypnyk and Lowe, 2004) (tracking by detection).

The proposed system can be described with two modes:

• Tracking-by-detection mode: SIFT features are extracted and matched against
the database of the template features. If the procedure finds a minimum of εs
correspondences, an homography H is computed using RANSAC. Then, the
system goes to the recursive tracking mode.

• Recursive tracking mode: With the H provided in the previous frame, the
current frame is processed using a template-based technique (ESM-blur (Park
et al., 2009)). After the convergence of the minimization (or the maximum
allowed number of iterations exceeded), the frame is warped using the inverse
of the computed homography. To evaluate the current estimate of H, this back-
warped image is compared to the model using a normalized cross correlation
(NCC) (see equation (4.1)).
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If the NCC coefficient is inferior to a threshold εn, the system changes to the
previous mode because it is assumed that the template-based tracker lost the
object. The value of εn was defined empirically — a value around 0.6 shows
good results.

5.2 Implementation Details

For the tracking-by-detection mode we used the library SIFT-GPU1 that imple-
ments the SIFT detection and matching on GPU (Sinha et al., 2006). The size of
frames has a great impact on the performance because the detection of SIFT features
is performed in the whole frame — the complete tracking-by-detection mode, using
a NVIDIA Quadro FX 3800 and 640×480 frames, leads to the performance around
12fps.

For the recursive tracking mode, we started with a CPU implementation using
the OpenCV library, which provides optimized functions to perform the algebraic
operations that the ESM needs. This first implementation did not result a real-time
performance.

As the most costly step in the ESM algorithm is the computation of Jesm, a
second implementation was carried out using the fact that it is not necessary to
compute Jesm explicitly. In Algorithm 1, it can be seen that Jesm is used to compute
the update of the homography parameters ∆p. These values are computed using
two multiplications involving Jesm: JT

esmJesm and JT
esmy.

Given that Jesm is a q×8 matrix and writing the values of its ith line as
[ai, bi, ci, di, ei, fi, gi, hi], the product JT

esmJesm can be written

JT
esmJesm =



a1 a2 . . . aq
b1 b2 . . . bq
c1 c2 . . . cq
d1 d2 . . . dq
e1 e2 . . . eq
f1 f2 . . . fq
g1 g2 . . . gq
h1 h2 . . . hq




a1 b1 c1 d1 e1 f1 g1 h1

a2 b2 c2 d2 e2 f2 g2 h2
...

...
...

...
...

...
...

...
aq bq cq dq eq fq gq hq



JT
esmJesm =

q∑
i=1



a2
i aibi aici aidi aiei aifi aigi aihi

aibi b2
i bici bidi biei bifi bigi bihi

aici bici c2
i cidi ciei cifi cigi cihi

aidi bidi cidi d2
i diei difi digi dihi

aiei biei ciei diei e2
i eifi eigi eihi

aifi bifi cifi difi eifi f 2
i figi fihi

aigi bigi cigi digi eigi figi g2
i gihi

aihi bihi cihi dihi eihi fihi gihi h2
i


. (5.1)

Notice that the matrix JT
esmJesm is symmetric, thus for each pixel only 36 values

are required to find the matrix (and 8 values for JT
esmy). It can be seen in equation

(5.1) that each pixel can be processed independently, thus only one passage in the
template pixels is necessary to compute JT

esmJesm and JT
esmy.

1The library is currently available for free at http://www.cs.unc.edu/c̃cwu/siftgpu/
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This can increase the algorithm speed, because, if the values of the two matrix
multiplications are computed directly, calculate ∆p consists only of the inversion of
an 8×8 matrix and a multiplication by a 8×1 vector.

The times taken per iteration are shown in Figure 5.1. It can be seen that the
computation times in the implementation that does not calculate the Jesm explicitly
(in the picture, this version is labeled CPU - version 2) are smaller than the times in
the first CPU implementation.
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Figure 5.1: Times taken per iteration for several ESM implementations

To further increase the performance, we developed a GPU version of ESM, also
not computing Jesm explicitly, as the above method. The application was coded using
the NVIDIA’s CUDA framework that greatly simplifies general purpose programming
on GPU. GPUs are designed to process data in parallel, which is suitable for image
processing applications and therefore tracking applications.

Two of the most important aspects in general-purpose computing on graphics
processing units (GPGPU) is to try to achieve high parallelism between threads and
to minimize the GPU-CPU transfers, which are slow. Our implementation, shown in
the diagram of Figure 5.2, follows these characteristics: all of the procedures that
are executed on the GPU are of high parallelism. In all the cases, for each pixel
coordinate of the template a thread on the GPU is created.

An important issue faced was how to perform the sums of values needed to
build the matrices JT

esmJesm and JT
esmy on GPU. The naive approach of using the

same GPU memory area is not optimized and incorrect because writing in the GPU
memory is not an atomic operation. If the sum is fixed to be atomic, the performance
will drop because each thread must wait its time to read/write the memory. The
implemented solution consists of each thread writing its own matrix with a parallel
reduction procedure taking place afterwards. At each time-step, the number of
threads and matrices is reduced by a factor of 2. After log q steps we have only one
matrix.



37

Figure 5.2: Flow diagram of the ESM implementation on GPU

After the computation of the final JT
esmJesm and JT

esmy, the matrices are copied
to the CPU to compute ∆p. The calculation of ∆p is done on CPU, because it
cannot achieve a large optimization on GPU, as it involves only a few values.

Our implementation of ESM in GPU greatly improves the performance in com-
parison with CPU implementation, as the Figure 5.1 shows. For templates of size
equal or larger than 128×128, the GPU implementation is faster. Table 5.1 shows
additional information about the times taken per iteration of each implementation.

5.3 Results

The tracking performance with the dataset used along this report is shown in
Figure 5.3. It can be seen that the system retains a good localization in almost every
frame and recovers itself after a large displacement. These good results are mainly due
to two important aspects. First, the characteristic of tracking-by-detection methods
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Implementation × Template size 64×64 128×128 256×256 512×512

CPU 1.79 8.53 47.35 266.02
CPU (version 2) 0.75 2.84 13.32 53.98
GPU 1.05 1.72 4.52 15.61

Table 5.1: Times (in ms) taken per iteration of different ESM implementations

that treat each frame individually and therefore are able to recover a good pose when
something goes “wrong” between two consecutive frames (a large displacement in
our dataset). Second, the robustness of template-based techniques that are able to
track the target object in real-time when the inter-frame displacement remains small.

0 100 200 300 400 500 600 700 800 900
Frame

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 c

ro
ss

-c
or

re
la

tio
n 

(N
CC

)

Oblique viewing angle Occlusions Scale change Large displacement

Proposed method
SIFT Matching
ESM-Blur

Figure 5.3: Hybrid system performance in the test dataset

Table 5.2 compares the means and medians of the NCC value for the whole
sequence in our dataset. It is clear that our proposed method improves significantly
the accuracy of tracking for the dataset tested. The difference between our hybrid
approach and other methods could be even bigger if the sequence had more large
displacements and oblique viewing, the problems that ESM and SIFT Matching
(respectively) cannot handle very well.

However, both the mean and the median values are corrupted by outliers: the
frames where the tracker is lost. To further evaluate the results, the percentage of
good poses was computed for all the methods. As before, the definition is that a
good pose is obtained when the computed NCC value is above a given threshold. In
Figure 5.4, this metric is applied for several methods and for different thresholds.

The robustness of our method makes it suitable for real world applications. The
method was used to place virtual objects in the target object in Augmented Reality
application. Screenshots of final system are shown in Figure 5.5. The performance
of the system achieves (in average) 30 frames per second.
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Method Mean NCC value Median

SIFT Matching 0.70 0.79
KLT Tracker 0.17 0.05
Particle Filter (SIFT) 0.42 0.46
IC 0.75 0.86
ESM-Blur 0.80 0.90
Proposed Method 0.89 0.90

Table 5.2: NCC average (and median value) computed for the whole sequence of the
dataset.

0.0 0.2 0.4 0.6 0.8 1.0
ε

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f g
oo

d 
lo

ca
liz

at
io

n

SIFT Matching
KLT Tracker
Particle Filter
IC
ESM-Blur
Proposed method

Figure 5.4: Pecentage of good localization for several methods. Here, good localization
is defined as the number of frames with a NCC value greater than the threshold ε.
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(a) Teapot object (b) A 3D avatar of the author

Figure 5.5: Screenshots of the final system with augmented objects
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6 CONCLUSION

The 3D tracking literature is massive because of the many applications that use
tracking and the variety of solutions to the problem. All these approaches can be
separated into two categories, namely, tracking-by-detection and recursive tracking,
based on the independence of the current frame estimation.

Tracking-by-detection methods search in the whole frame for an object’s pattern
that was learned in an offline stage. Each frame is processed individually, such that,
the information of the previous camera poses is not used. This aspect leads to a
good recovery when the system is lost, due to a large movement, severe blur or a
complete occlusion.

The tracking-by-detection method using SIFT features shows good results, dealing
well with partial occlusions and large displacements, but when frames present blur
or the target object is too far from the camera, the matching of natural features
is compromised. The lack of 3D-2D correpondences leads to a low quality pose
estimation and can cause jitter.

Traditional tracking methods, estimate recursively the object pose, searching
nearby previous poses for the current object’s position and orientation. This char-
acteristic can simplify the tracking and increase temporal consistence, but comes
with a price. In such systems, a manual initialization is often required and if the
system loses the target object pose, e.g. when a large movement occurs, it cannot
recover the tracking and a reinitialization must be done. In our work, three recursive
methods were studied: KLT, Particle Filtering and Template-based.

The use of a KLT-like tracker can result good localization when the camera
movement is smooth, but fails otherwise, due to the assumption in such systems that
the inter-frame displacement will remain small. Moreover, the approach assumes that
the image brightness is constant along the frames and that, in most formulations,
the interest point deformation is an affine transformation, which can be false for 3D
tracking.

Particle filters provide a framework for camera pose estimation using different
types of measurements. With the types of measurement studied, even when partial
occlusions occurred, the system gives good estimates, but it shows jitter. Also, in
frames which the measure is weak or not available, the technique cannot well evaluate
the particles, leading to poor estimations. Moreover, if the displacement between two
frames is expected to be large, as in our application, the particles must be spread
in a larger part of the state space of possible camera’s poses and therefore, a high
number of particles is required to improve accuracy; the higher number of particles
creates a cost in the computation, such that, in many particle filtering systems the
real-time performance cannot be achieved.
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The latter recursive method shows the best results. Template-based methods can
work well in the presence of blur (Park et al., 2009) or large illumination changes
(Silveira and Malis, 2007). Additionally, our set of experiments shows that when the
object is viewed in oblique angles, the tracking accuracy remains high, specially when
using the Efficient Second-order Minimization (ESM) method. Even so, occlusions
are difficult to handle and these techniques suffer from the same problems of recursive
methods discussed.

The good performance of the ESM method and its inability to recover after the
lost of the object pose, suggests that the method, to be a complete solution, must be
coupled with a tracking-by-detection technique that performs a re-initialization of
the ESM algorithm whenever the tracking is lost. The hybrid approach proposed
in our work, show great improvements in the tracking performance. Additionally,
optimizations on GPU were performed in its implementation to achieve real-time
performance.
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