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ABSTRACT

Collective behavior detection and pedestrian tracking present many applications, specially in

surveillance systems. In this dissertation, we proposed a complete pipeline for achieving robust

tracking and collective behavior recognition based on calibrated static cameras.

To remove the necessity of manual calibration, we first present a fully automatic self-calibration

system that explores pedestrian detection results and background removal at non-consecutive

frames in order to calibrate a static camera using a non-linear cost function. We also propose the

use of camera calibration to generate geometrically coherent candidates for pedestrian detection.

Our approach aims to reduce the scale range typically used in sliding-window techniques, which

leads to less feature extractions and decreased number of false positives.

Then, we propose a multi-target pedestrian tracking algorithm using a calibrated static camera.

The tracking approach explores color histograms to track patches of each target. Obtained

displacement vectors are combined with the expected motion of pedestrians in the world coordi-

nate system. The proposed tracker also incorporates pedestrian detector results to improve the

system’s accuracy and its ability to recover from failure.

Finally, we propose a two-layered approach for collective behavior recognition based on Random

Forests classifiers. In the first level, we use inter-personal distances and relative speeds computed

in the world coordinate system to classify asymmetrical pair interactions. Those interactions are

combined with group shape dynamics and mean velocity to recognize the collective behavior.

We devise a set of experiments to attest the quality of our approaches using publicly available

datasets. Results have shown to be competitive against state-of-the-art techniques, and particu-

larly of good generalization across different databases.

Keywords: Pedestrian tracking. people detection. collective behavior. group activity. self-

calibration. surveillance systems.



Rastreamento de Pedestres e Análise de Comportamento Coletivo

RESUMO

A análise de comportamento coletivo e rastreamento de pedestres apresentam diversas aplicações,

especialmente em sistemas de vigilância inteligente. Neste trabalho é proposta uma solução

compreensiva com objetivo de atingir rastreamento de pedestre e reconhecimento de atividade

coletiva de maneira robusta baseada na utilização de câmeras calibradas.

Primeiramente, com o objetivo de remover a necessidade de calibração manual, nós apresentamos

um método de calibração automática que explora detectores de pedestres e remoção de fundo

para calibragem baseada em otimização não-linear. Adicionalmente, nós propomos a utilização

da matriz de calibração para gerar candidatos coerentes com a geometria de cena em detectores

de pedestres. Nossa abordagem tem como objetivo diminuir o intervalo de escalas comumente

utilizado em detectores baseados em janelas deslizantes, gerando um número menor de extrações

de atributos e reduzindo o número de falsos positivos na detecção.

Em seguida, nós propomos um método de rastreamento de múltiplos pedestres utilizando

câmeras calibradas. Nossa abordagem explora histogramas de cor para rastrear os pequenas

regiões (patches) de cada alvo. Os vetores de deslocamento obtidos através do pareamento de

atributos de aparência são combinados com um vetor obtido através de um preditor de movimento

em coordenadas de mundo. Adicionalmente, nós incluímos informações originárias de detectores

de pedestres para aumentar a acurácia do sistema e sua habilidade de recuperação a falhas.

Por fim, nós propomos uma abordagem hierárquica de duas camadas para o problema de

reconhecimento de atividade coletiva baseada no uso de classificadores Random Forests. No

primeiro nível da técnica proposta, nós utilizamos distâncias entre pares de pessoas e suas

respectivas velocidades relativas para classificar interações de pares. Estas interações são

combinadas com a dinâmica do formato do grupo observado (e sua respectiva velocidade) para o

reconhecimento de atividades coletivas. Os experimentos realizados neste trabalho demonstram

a qualidade de nossas abordagens em sequências de vídeos disponíveis publicamente. Nossos

resultados mostram serem competitivos quando comparados com técnicas do estado da arte

e, particularmente, apresentam uma boa generalização entre diferentes cenários de captura de

vídeo.

Palavras-chave: rastreamento de pedestres, detecção de pessoas, análise de comportamento,

calibração de câmera vigilância de vídeo.
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1 INTRODUCTION

1.1 Motivation

In recent decades, the rapid increase in the number of cameras distributed in both outdoor

and indoor environments has prompted a necessity for processing an enormous quantity of data

in a manner that is both automatic and swift. The traditional protocol in video surveillance,

which consists of showing a mosaic of streams on a screen monitored by a human operator

(see Fig. 1.1), has been proved to be ineffective. A studied performed by the National Institute

of Justice of the United States (GREEN, 2005) indicated the attention of an operator in such

systems significantly drops after only 20 minutes of watching and evaluating a security video

sequence. Therefore, it is no surprising that the problem of obtaining high-level information

from the streams of (an ever increasing number of) cameras in public spaces has raised the

interest of the research community in the last few decades. In the context of video surveillance,

there are several possible applications that could benefit from computer vision algorithms. The

scope of such applications is actually very broad (HAERING; VENETIANER; LIPTON, 2008):

many focus on physical security and law enforcement (LIPTON, 2005), such as in applications

that aim to detect intruders (LIM; TANG; CHAN, 2014), abandoned objects (FERRYMAN

et al., 2013), people loitering (ARROYO et al., 2015), among others; additionally, there are

applications concerning traffic control (XIA et al., 2016), video synopsis (RAV-ACHA; PRITCH;

PELEG, 2006; LEE; GRAUMAN, 2015) and even retail analytics (DENMAN et al., 2012)– often

performed by counting people and recognizing gender, customer behavior and facial expressions.

Figure 1.1 – Classical surveillance systems are inherently flawed. Often, the operator is overwhelmed
with data.

Source: (SEBE et al., 2003)
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Although there are many possible applications in the context of video surveillance,

the typical pipeline involves a set of common problems, as highlighted in Figure 1.2. Often,

surveillance systems will present an initialization step to estimate/compute a set of parameters

that will be fixed along the execution of the system, such as camera parameters (assuming static

cameras with no zoom), areas of interest in the scene, an initial background model, etc. – these

can be computed automatically or be inputted manually by an operator. At runtime, the majority

of the systems employs background segmentation on the frame and/or object detection to detect

the entities that are important in the context of the application (e.g. people, vehicles, etc.).

Tracking the relevant objects detected in the previous step is also a common task, aiming to

obtain information about their dynamics. Activity inference (or some type of high level semantic

recognition) often uses classification or direct trajectory analysis to infer events involving the

entities of interest, such as loitering detection, fighting, objects invading restricted zones and

unusual events, to name a few. Finally, alerts and statistics can be created using collected data.

Figure 1.2 – A traditional pipeline of intelligent surveillance applications.

Setup-specific 
models:

e.g. background, 
calibration, area of 

interest

stream

Alerts
   - person loitering 
   - pickpocketing 
   - unattended object

Background
Update
(optional)

Object Detection
eg: cars, people, 

objects, etc.

Tracking
e.g. people 
trajectories

Activity
Inference
e.g. event 
detector

Initialization

Source: Author

1.2 Problem description and dissertation goals

As mentioned before, the scope of problems tackled in video surveillance applications is

very broad. They might involve single or multi-camera setups, fixed or moving cameras, focus

on different types of objects (such as pedestrians, bicycles, vehicles, etc.), and finally extract and

analyze information at different “levels”, ranging from direct analysis of tracked trajectories to

high-level actions that involve human body parts detection, such as punching or kicking.

The main focus of this dissertation is to detect and recognize collective behaviors of
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people in a video sequence captured by a single static camera. To reach this final goal, the

dissertation also tackles two important problems also present in surveillance pipelines: camera

calibration and multiple pedestrian tracking.

In fact, the problem of detecting group activities in a video sequence has attracted the

attention of the computer vision community in the past years, yet it remains mostly an open

problem. Besides video surveillance, there are many other applications that could benefit from

a robust solution to this problem, such as traffic monitoring and video indexing by semantic

context, to name a few. In most of the solutions proposed in the literature, a pedestrian tracker is

used first to extract the trajectories, which are then analyzed and classified into different sets that

usually correspond to group activities or event classes.

In this dissertation, we are mainly interested in the analysis of group behavior in surveil-

lance scenarios by exploring the ground plane trajectories obtained from a sequence. We propose

two types of descriptors that capture pair-wise and collective information from trajectories using

a hierarchical strategy. To infer the interaction of each pair of subjects, we extract their relative

distance and speed within a temporal window. Instead of using image coordinates, we use ground

plane positions in order to have real-world metric measurements and the ability to generalize

between different camera setups. Furthermore, the use of real-world distance allows us to infer

the “level” of interaction between a pair of agents using known psycho-social studies. For

example, Hall (HALL, 1973) introduced the concept of proxemics, which is a personal space

(spatial region) that each person tends to preserve. The radii of these regions depend on the kind

of relationship between the agent and the neighbor, which would be very hard to estimate based

solely on image coordinates. Once the pair-wise features are extracted, they are fed to a classifier

in a subsequent step to classify each pair-wise interaction. In a second stage, we compute an

histogram from these interactions and augment this data with the group shape dynamics, mean

velocities and current positions of all the people involved in the interaction. The classification is

divided in two layers and Random Forests are used to combine the different kinds of information.

The use of ground plane coordinates of pedestrian tracks requires a pedestrian tracking

algorithm and also a calibrated camera, so that mapping from image to plane coordinates is

possible. Although there are many camera calibration approaches that explore calibration

patterns (ZHANG, 2000; TERAMOTO; XU, 2002), the development of self-calibration methods

that explore real world information without manual intervention has shown to be very important

in practical surveillance applications (WANG, 2013). For instance, when using pan-tilt-zoom

(PTZ) cameras, it is common for a human operator to change the camera settings aiming to

monitor a specific point of interest. In that case, manual re-calibration would be impractical, and
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automatic self-calibration could be used.

This work also tackles the problem of self-calibrating a single static camera by exploring

information about pedestrians present in the sequence. First, a detector is used to extract

pedestrian bounding boxes, which are fed to a “people poles” extractor that employs background

segmentation and PCA (Principal Component Analysis) to extract the vertical orientation and

height of the pedestrians. These poles are then used to estimate an initial calibration that is

improved using a non-linear optimization procedure.

Finally, this dissertation also tackles the problem of multiple pedestrian tracking. A

robust tracking system should be able to cope with a high number of occlusions, different camera

setups, image noise, etc. It is also very important to detect the pedestrians as soon as they enter

the scene, initialize their trackers and terminate them when they leave. To handle the pedestrian

tracking problem, we developed an iterative approach that explores a calibrated camera and the

expected ground-plane motion of a standing pedestrian to reduce the algorithm complexity and

achieve near-real time performance while still being a causal approach (i.e. no latency). We mix

information from a pedestrian detector, a patch-based template matching tracker and motion

prediction in a framework that combine displacement vectors robustly in the world coordinate

frame. The use of calibration is again used to reduce the search area for the targets displacement

and their scale variations.

Figure 1.3 summarizes the main components of the proposed pipeline. At the initialization

step, a person detector and a background segmentation method serve as input for the extraction

of the so-called people poles. These poles are assumed to be vertically parallel in the world

and can used to generate the camera calibration matrix provided by a two-stage fully automatic

self-calibration procedure. Pedestrian detectors and foreground masks are also used in the

tracking phase. To increase performance and accuracy, we reconstruct 2D patch-based image

displacements in the World Coordinate System (WCS) using the camera calibration. This set of

vectors is augmented using motion prediction and detected pedestrians nearby the current target

location to better handle occlusions and target hijacking. Finally, the ground-plane locations of

tracked pedestrians are used to identify pair-wise interactions, and then classify the behavior of a

group of individuals during the video sequence.

1.3 Dissertation contributions

The main goal of this work is to identify collective behaviors in a video sequence acquired

by a single static camera. The main contributions of this dissertation are related to the three
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Figure 1.3 – The main components of our proposed pipeline. In this dissertation, we show contributions
in all these three problem.
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Source: Author

problems described in Section 1.2, which are related to the three main steps in a collective

behavior recognition system as shown in Figure 1.3, namely:

• Development of a fully automatic self-calibration system based on background segmen-

tation, people detection and a non-linear optimization phase. The method is shown to

correctly estimate the camera projection matrix. We also proposed the use of calibration

to the problems of people tracking and detection (FÜHR; JUNG, 2015; FÜHR; JUNG;

PAULA, 2016).

• Development of a robust multi-target pedestrian tracker by exploring displacement vectors

in the WCS, which are possible to obtain when calibrated cameras are used. We show

experimentally that our tracker is both fast and accurate without the drawback of non-

causality presented by some modern alternatives based on tracking-by-detection (FÜHR;

JUNG, 2012; FÜHR; JUNG, 2014).

• Development of a collective behavior recognition method using a two-stage Random
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Forests classification scheme, which is able to extract pair-wise interactions and then

collective behaviors. The proposed method uses very compact descriptors based on WCS

metrics, and our experiments indicate global accuracy comparable to or better than stat-

of-the-art competitors, being also able to generalize surprisingly well across different

datasets.
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2 RELATED WORK

As it was discussed in the previous chapter, our main contributions are in three different

yet closely related problems. Therefore, our review of the specialized literature is divided based

on the modules illustrated in Figure 1.3. First, Section 2.1 covers some methods related to camera

self-calibration. In Section 2.2, we review the state-of-the-art in pedestrian tracking. Finally,

Section 2.3 discusses some recent works on collective behavior recognition.

2.1 Self-calibration

Camera calibration is a widely studied problem in computer vision, and most existing

approaches rely on a set of calibration patterns (TSAI, 1987; ZHANG, 2000; DOUXCHAMPS;

CHIHARA, 2009). Self-calibration approaches, on the other hand, explore features that can

be extracted from image objects in a given context, such as buildings (KIM; KWEON, 2009),

roads (KANHERE; BIRCHFIELD, 2010), or the geometry of tennis courts (YU et al., 2009). In

particular, this brief review focuses on approaches that explore the expected pose or motion of

pedestrians for camera self-calibration. Some of the foundations for later work on self-calibration

using people appearing in the scene was introduced by Cipolla et al. (CIPOLLA; DRUMMOND;

ROBERTSON, 1999), who used three vanishing points computed from lines extracted from

architectural scenes. Also, it is worthwhile to mention the study of Zhang on camera calibration

using one-dimensional objects (ZHANG, 2004).

The work of Lv. et al. (LV; ZHAO; NEVATIA, 2002b; LV; ZHAO; NEVATIA, 2006)

proposed to calibrate a camera using a single pedestrian that it is observed at several locations

in the scene. The feet and head points of the pedestrian are first extracted using background

segmentation. Then, the method analyzes the eigenvalues of the covariance matrix computed

from the foreground pixel positions, and their ratio is computed for several walking cycles of the

same subject. These values are temporally arranged to form a series whose minimum is achieved

when the person legs cross. At these minima, the lines from feet and head are stored to compute

the horizon line and the vertical vanishing point of the image. These measurements serve as

input for the calibration computation. Some of the method’s steps are illustrated in Figure 2.1(a).

Their method, however, does not handle noisy measurements very well and assumes a single

person scenario. Kusakunniran and colleagues (KUSAKUNNIRAN; LI; ZHANG, 2009) use the

same approach for feet and head extraction, yet aim at computing the projection matrix directly,

without extracting focal length, optical center, etc.
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Figure 2.1 – Main components of selected self-calibration techniques found in the literature. (a)
The seminal work of Lv. et al (LV; ZHAO; NEVATIA, 2002a) uses pedestrians as vertical poles and
estimates the calibration using the horizon line and vanishing points. (b) Hoiem and colleagues (HOIEM;
EFROS; HEBERT, 2008) aim to estimate the different surfaces of the scene to improve detections.
(c) (BROUWERS et al., 2016) uses head and feet detectors to estimate pedestrian orientation for self-
calibration.

(a) Source: (LV; ZHAO; NEVATIA, 2002a)

(b) Source: (HOIEM; EFROS; HEBERT, 2008) (c) Source: (BROUWERS et al., 2016)

Krahnstoever and Mendonça (KRAHNSTOEVER; MENDONçA, 2005) proposed a

self-calibration method that uses information of pedestrians in terms of foot-to-head homologies.

To perform calibration, these measurements are fed to a Bayesian filter, which is also used

to model error and outliers. However, their algorithm requires prior knowledge about the

calibration parameters. The work proposed in (JUNEJO; FOROOSH, 2006) also employs the

idea of homologies to solve auto-calibration. Their approach is a linear one, and is somewhat

similar to the work of Lv. et al. (LV; ZHAO; NEVATIA, 2006) due to the fact that the authors

also use the horizon line and vertical vanishing points to compute the projection matrix. Also,

temporal consistency and a single person setup are requirements of the method. A follow-up

was proposed in (JUNEJO; FOROOSH, 2007), where the calibration step was integrated with

path modeling and surveillance (although the calibrated camera was not explored for pedestrian

detection/tracking).

Micusík and Pajdla (MICUSIK; PAJDLA, 2010) presented an approach for camera

self-calibration by extracting silhouettes and formulating the calibration of internal and external

camera parameters as a Quadratic Eigenvalue Problem, using the estimated camera parameters

to improve silhouette extraction. Despite the good results shown in (MICUSIK; PAJDLA, 2010),
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tests were performed in controlled environments, and the initial silhouette extraction may fail

in practical surveillance scenarios. Zhang and colleagues (ZHANG et al., 2013) presented an

approach for camera calibration by also exploring vehicle motion in traffic scenarios. However,

their method requires the camera height to be known a priori.

The work of Liu and colleagues (LIU; COLLINS; LIU, 2013) proposes a self-calibration

method for multi-view scenarios. First, the approach tries to fit ellipses around foreground blobs

to extract the principal orientation of each person in a scene. This serves to compute robustly

the vertical vanishing point – the focal length is extracted by testing a set of hypothesis and

minimizing an error function based on the blobs 3D heights. This process is performed for

each camera first individually and then an optimization is performed to define a global world

coordinate system. Also focusing in multi-view scenarios, the method of Guan et al (GUAN

et al., 2016) proposes the reconstruction of head and feet positions in 3D w.r.t. a local camera

coordinate system. The extrinsic parameters are extracted by solving a linear system of equation

using least squares. The information from different cameras is then combined (pairwise) to

generate the extrinsic calibration, which is further refined using an optimization via Gradient

Descent aimed at minimizing the reprojection error over all parameters. Despite the simplicity

of the method, the authors focus their experiments in more controlled scenarios.

More recently, Brouwers et al. (BROUWERS et al., 2016) proposed an approach that

also uses head and feet locations (as illustrated in Figure 2.1(c)) to extract vanishing points and

the horizon line. Instead of using foreground masks, they train Histograms of Oriented Gradients

(HOG) detectors for feet and head localization which are performed separately. Then, head and

feet of same people are matched by shifting the head detection downwards and computing an

overlap with the possible feet detection: if the overlap is too small, the pair is rejected. The lines

from feet to head are used to estimate the full calibration matrix based on the generic work of

(ORGHIDAN et al., 2012), which uses vanishing points to calibrate cameras.

The method of Huang et al. (HUANG et al., 2016), similarly to previous works, also

focus on extracting three vanishing points to calibrate the camera. Yet, the features used in

their work consist the left and right foot locations of a person walking in a straight line. By

combining these points in order to generate lines (similar to what is proposed in (LV; ZHAO;

NEVATIA, 2006)), the method is able to extract the vanishing points and perform calibration.

Their formulation also address the problem of when the left and right foot positions are co-linear,

but it assumes that the foot are very prominent in the sequence such they can be individually

located.

As it will be clear in the next chapters of this dissertation, we aim to use the calibration
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at different stages of our pipeline. Since it is important to recover the real-world coordinates

from tracker trajectories, we must get a full understanding of the camera position and orientation

w.r.t. the ground plane. However, there are some methods that do not require a full calibration

matrix, but instead are interested in understanding some of the 3D structure of the scene and/or

camera viewpoint. One example is the method of Hoiem and collaborators (HOIEM; EFROS;

HEBERT, 2008), which consists of an approach for estimating the viewpoint (horizon line and

camera height) in a single image, as illustrated in Figure 2.1(b). For that purpose, they modeled

the viewpoint parameters in a probabilistic manner, and explored the relationships of different

objects detected in the scene (e.g. vehicles and pedestrians) to compute maximum likelihood

estimates. Additionally, they also used viewpoint and geometry cues to improve object detection.

Chakraborty et al. (CHAKRABORTY; CHENG; JAVED, 2013) build on top of (HOIEM;

EFROS; HEBERT, 2008) and attempt to recognize interactions between people in a single

image using geometric information. Face detections are used as input and the goal of their

calibration procedure is to estimate the ground plane coordinates of each detected face (taking

the assumption that they lay on the ground plane). To achieve this goal, they first assume that all

faces have the same height and look for outliers using RANSAC. These outliers are fed to an

error correction system that updates the model to explain those faces and retrieve their ground

plane disposition. Taylor and Mai (TAYLOR; MAI, 2013) proposed a method to estimate the

pixels corresponding to the floor by examining the movement of targets in the scene. With

a similar goal, the method of Fouhey et al. (FOUHEY et al., 2014) uses appearance and the

detection of people actions to determine if a surface of the scene is one in which people sit or

walk around.

2.2 Multi-object tracking

Object tracking is an active research topic in the computer vision community, and many

approaches were proposed in the last decades. However, the problem is still open, particularly

when tracking multiple simultaneous objects. The available literature on the subject is extensive,

and this dissertation will provide an overview of some works focused on monocular 2D pedestrian

tracking. The reader can refer to (YILMAZ; JAVED; SHAH, 2006; LEPETIT; FUA, 2005) for a

comprehensive review and taxonomy of general 2D and 3D tracking algorithms, or the survey

paper by Enzweiler and Gavrila (ENZWEILER; GAVRILA, 2009) for pedestrian detection and

tracking using monocular cameras.

Tracking multiple pedestrians simultaneously using a single camera is a challenging
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task. To robustly solve this problem, one has to account for appearance changes, images

noise, partial or total occlusions, among others. One of the first proposed systems, the W4

algorithm (HARITAOGLU; HARWOOD; DAVIS, 1998), employed background segmentation

combined with shape and texture information to perform real time tracking in gray-scale video

sequences. Fleuret et al. (FLEURET et al., 2008) also explored background segmentation

coupled with appearance models built using color histograms.

A challenging aspect of pedestrian tracking is to maintain a good localization during and

after an occlusion. A simple way to deal with partial occlusions is to consider the target object as

a set of patches. The rationale behind this idea is that if some patches are occluded and tracked

incorrectly, the remaining patches can provide a good estimate of the pose. The FragTrack

algorithm (ADAM; RIVLIN; SHIMSHONI, 2006) divides the target region into multiple image

fragments at initialization. For each fragment, a vote map is constructed using image histograms.

Then, these maps are combined in a robust way so that the influence of outliers is reduced. Dihl

et al. (DIHL; JUNG; BINS, 2011) also use the same idea for object tracking, but track each

patch independently and combine these tracking results to estimate the location of the target.

The use of multiple fragments has shown good results in generic tracking applications (ADAM;

RIVLIN; SHIMSHONI, 2006; DIHL; JUNG; BINS, 2011), and also when tailored to pedestrian

tracking (FÜHR; JUNG, 2012; FÜHR; JUNG, 2014).

In recent years, a different class of approaches based on tracking-by-detection has gained

significant attention, also because they are usually more robust than traditional methods in the

presence of occlusions. These methods are based on the continuous application of a detection

algorithm in individual frames, and then performing the association of detection results across

frames.

Benfold and Reid (BENFOLD; REID, 2011) use Histograms of Oriented Gradients

(HoGs) (DALAL; TRIGGS, 2005) and Kanade-Lucas-Tomasi (KLT) tracking to detect people

and estimate their motion between detections. To obtain the final trajectories, a Markov-Chain

Monte-Carlo data association is applied within a temporal window. Pirsiavash et al. (PIRSI-

AVASH; RAMANAN; FOWLKES, 2011) proposed a method that first detects all the pedestrians

in the sequence and then uses dynamic programming to associate the detections into trajectories,

as illustrated in Figure 2.2(b). Methods that performed data association globally (PIRSIAVASH;

RAMANAN; FOWLKES, 2011) or within a sliding-window (FAGOT-BOUQUET et al., 2016;

BENFOLD; REID, 2011) perform generally well, since looking at future frames can reduce

uncertainty at current and past times. Yet, this comes with a price: the latency caused by the use

of future observations in the estimation of the current state, i.e. they are not causal. Some new
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approaches tried to tackle this inherent problem. The work of Choi (CHOI, 2015) aim to keep

the benefits of a causal approach yet fixing past association errors. His work also introduces the

use of optical flow association (within a temporal window) following the reasoning that such

feature can provide a good cue in cases appearance fails – the motivation example is similar cars

being tracked with different dynamics.

In the context of this dissertation, the non-causal characteristic is undesired because many

surveillance applications require online tracking. Despite that, class-specific detectors have been

proved to be very powerful and are continuing to increase in accuracy and performance in recent

years (GEIGER; LENZ; URTASUN, 2012; ZHANG et al., 2016). Thus, it makes sense to use

pedestrian detection as an additional cue within an online framework.

Breitenstein and colleagues (BREITENSTEIN et al., 2011) presented a multi-person

online tracking algorithm in an incremental manner: they use class-specific information to detect

pedestrians, and also target-specific information to discriminate each pedestrian. Data association

across time is performed using a particle filter (Figure 2.2(a)), using position and velocity to

build the state vector. The tracker proposed by Liu et al. (LIU et al., 2015) is also based on

particle filters. Their main contribution is the addition of a model that simulates velocities and

destination for a set of pedestrians.

With the goal of tracking generic objects, Kalal et al. (KALAL; MATAS; MIKOLA-

JCZYK, 2010; KALAL; MIKOLAJCZYK; MATAS, 2012) presented an approach that combines

detection, learning and tracking. A tracker is used to follow the target in time, while the detector

localizes all appearances that have been observed in the past and corrects the tracker if necessary.

The learning phase estimates detection errors and updates the detector to avoid future mistakes.

The knowledge of camera information is also useful in pedestrian tracking. Choi and

colleagues (CHOI; SAVARESE, 2010) proposed a multi-target tracking model to identify the

trajectories of multiple objects in 3D based on an initial estimate of the camera parameters. Such

3D trajectories are estimated by measuring their projections onto the 2D image plane, which

represent the observation variables, and then jointly searching the most plausible explanation

for both camera and all the existing target states in using the projection provided by the camera

model. However, their method assumes that the camera is parallel to the ground plane, being

more useful for mobile robots than surveillance systems that rely on static cameras.

More recently, some papers have been proposed to tackle crowded scenes using the

concept of tracklets, i.e. small temporal adjacent associations of a target that are used to create

longer and more stable trajectories. Bae and Yoon (BAE; YOON, 2014) proposed a method

based on estimates of tracklet confidences and online appearance learning stage. The confidence
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Figure 2.2 – Main components of difference state-of-the-art methods. (a) Breitenstein et al. (BRE-
ITENSTEIN et al., 2011) use particle filtering to track subjects. (b) Pirsiavash et al. (PIRSIAVASH;
RAMANAN; FOWLKES, 2011) assemble tracklets into trajectories with a global optimization algorithm.
(c) Bae and Yoon(BAE; YOON, 2014) rely on the confidence of tracklets to perform global or local
associations.

(a) Source: (BREITENSTEIN et al.,
2011)

(b) Source: (PIRSIAVASH; RAMANAN; FOWLKES,
2011)

(c) Source: (BAE; YOON, 2014)

of a tracklet depends on three different aspects: i) how much the subject appears occluded in the

scene; ii) how well a nearby detection can be associated with a tracklet; and iii) the length of a

tracklet. The effect of an occlusion to the tracklet confidence can be observed in Figure 2.2(c).

The tracklets are associated based on its confidence: a global association is performed if a tracklet

presents a low confidence value, while a local association (with a detection) is applied otherwise.

Another method based on global optimization was proposed by Zhang et al. (ZHANG et al.,

2015). Their method works by first associating temporal adjacent detections into tracklets using

pairwise Markov Random Fields. The algorithm iterates between the optimization of trajectories

and tracklets until the system converges. At each iteration, longer tracklets are created. Their

approach show improvement upon existing non-causal approaches. Wang et al. (WANG et al.,

2016) proposed the use of motion and appearance in order to learn a discriminative metric to

associate tracklets. While appearance is modeled using color and shape information, motion

dynamics similarity assumes that the targets do not change significantly their dynamics between

tracklets. The method learns weights for each affinity model at tracking-time and refines tracklets

using these data. Experimental results do not show significant improvement over the state-of-
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the-art, yet the authors show that tracking improves when both appearance and motion are used,

suggesting that both are important cues for tracking.

In analogy to what occurred to many other fields in Computer Vision, Convolutional

Neural Networks (CNNs) based methods have appeared in the last few years for general object

tracking. Bertinetto and colleagues (BERTINETTO et al., 2016) trained a fully convolutional

network to learn a function of similarity that is used for tracking. At runtime, a set of search

locations is fed to the network to predict the current 2D pose probability map of the target in the

current image. The model used to describe the appearance of the target is not updated trough time

and a search window is defined at different scales. Held et al. (HELD; THRUN; SAVARESE,

2016) proposed a similar architecture but use as input the current and previous frames cropped

around the previous location. The output of the network is the estimated bounding box for the

current frame. Since their network is quite simple, they achieve very fast performance. However,

the system cannot handle well occlusions or fast movements.

Several recent methods propose the use of learning in multi-object tracking performed in

both offline (XIANG; ALAHI; SAVARESE, 2015) and online fashions (BAE; YOON, 2014).

The method of Xiang et al. (XIANG; ALAHI; SAVARESE, 2015) proposes the use of Markov

Decision Processes (MDP) in a reinforcement learning scheme to make decision about the people

trajectories. The MDP models the lifetime of an object and has the states of active, tracked,

lost or inactive. The policy that will be learned in training will constitute the data association

from detections to trajectories. Experiments show that despite heavily relying on these learned

policies, the method is still able to perform reasonably well in cross dataset scenarios.

It is also worth mentioning here the work done in past years from the MOT Chal-

lenge group, most recently by Milan and colleagues (MILAN et al., 2016), who set a com-

prehensive benchmark for pedestrian tracking. This follows previous work of Bernardin et

al. (BERNARDIN; STIEFELHAGEN, 2008), who proposed a metric protocol for multiple-

object tracking that since became very popular (and it is used in this dissertation): the CLEAR

MOT metrics. A very recent work that performed very well in the MOT Challenge is the method

of Sadeghian et al. (SADEGHIAN ALEXANDRE ALAHI, 2017), which combines multiple cues

to perform tracking: motion, appearance and interaction cues are combined inside a Recurrent

Neural Network. As it seems to be a trend in the last couple of years, the appearance features are

extracted using previously proposed CNNs. Unfortunately, many of the challenge videos are not

from surveillance scenarios and some are captured by moving cameras in which calibration is

not possible. Nonetheless, the sequences used for the tracking experiments of this dissertation

(Towncentre e PETS S2.L1) are included in the MOT Challenge dataset.
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2.3 Collective behavior recognition

In recent years, there has been increasing interest in inferring semantic information about

the relation and interaction among people in a video sequence. There are different terms that

are being used to describe the topics that are related to this fairly new area of research, such as

group activity recognition, collective activity recognition and collective behavior recognition.

In this dissertation, we chose the latter term because we are mainly interested in two aspects of

the human behavior analysis: the activities that are being observed in the video and the social

relation between pedestrians. It is also important to clarify that we focus our research on sparse

surveillance scenarios, where people are individually identified, as opposed to crowd analysis. In

the remaining of this section, we highlight some of the relevant works on collective behavior

recognition. A more comprehensive study on human behavior recognition can be found in the

survey of Borges et. al (BORGES; CONCI; CAVALLARO, 2013).

One of the first works about human interactions was proposed by Oliver et al. (OLIVER;

ROSARIO; PENTLAND, 2000). They developed a framework that applies Kalman filter in order

to track the objects’ locations, shape, color and velocity. This information, together with the

spatial relationship to nearby objects, is used to describe people’s motion and interaction. The

data is temporally arranged in streams that are used to obtain the collective behavior observed

in the sequence. Extensions on the well know Hidden Markov Models (HMM) are presented

in order to cope with multiple agents and state variables that interact with each other. Their

algorithm is able to detect behaviors such as meet and continue together, meet and split and a

person following another. Taj and Cavallaro (TAJ; CAVALLARO, 2010) also use HMMs to

detect events and activities involving persons and objects, as well as groups of people (which

they call in their paper as Interaction Event Recognition, IER). For the latter, features such as

relative distances, direction and speed are used for training. The activities tackled in their work

are people approaching, meeting and walking together.

Ge et al. (GE; COLLINS; RUBACK, 2012) proposed a method to discover pedestrian

groups in a video sequence. First, they combine pedestrian detector, particle filter for tracking

and a data association scheme to merge people tracklets into trajectories. These trajectories are

projected to the ground plane using an homography and an hierarchical clustering approach

is used to identify and merge/split small groups of people. Their algorithm is inspired by the

sociological work of McPhail and Wohlstein (MCPHAIL; WOHLSTEIN, 1982), which proposed

an objective scheme to detect groups of pedestrians. This detection can be decomposed in

three subsequent tests performed in groups of two people. More specifically, for a pair to be
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considered a group the subjects should: 1) be closer than 2 meters and not separated by another

subject; 2) have a difference in their speeds that is lower than 0.15 meters per second and finally

3) have a difference in direction smaller than 3 degrees. Feng and Banhu (FENG; BHANU,

2015) proposed a method to identify groups and their interactions using what they called an

evolving tracklet interaction network (ETIN). Tracklets are considered as nodes in a graph and

the edges represent the relation between different persons in the scene. The weight of these

relations is measured by the weighted sum of aggregated positional, velocity and directional

distances. Social groups are identified by maximizing the modularity of the network created

using the tracklets that appear in a given period of time (snapshot).

Choi et al. (CHOI; SHAHID; SAVARESE, 2009) proposed a method for collective

activity classification that first detects the people in the scene and extract their poses using

a Support Vector Machine (SVM) classifier that defines the human poses as front, left, right

and back with respect to their orientation from the camera. The subjects are tracked using

Kalman filters and their trajectories are represented by descriptors which the authors called

Spatial-Temporal Local (STL) descriptors. Figure 2.3 shows an illustration of this kind of feature.

These are simply histograms of the number and orientation of people within a radius area around

a specific subject along time. These features are used for classification — once again, an SVM

classifier is used for this task. The method is able to detect events such as people queuing in line,

talking and crossing a street. Extracting the subjects direction can be helpful to understand the

role of an individual in an activity – for instance, it is possible to differentiate waiting to cross a

street or queuing if the people still directions are extracted. However, their approach to obtain

these orientations is highly dependent on the camera views used in the training and test sets. An

extension of the STL descriptor was presented by Chang and colleagues (CHANG; ZHENG;

ZHANG, 2015), which use motion features together with the STL descriptor to learn pairwise

relations for different collective activities.

The work presented in (CHU et al., 2012) uses only the information based on trajectories

to classify group activities. They introduce the idea of heat-map features in which a trajectory is

modeled as a series of heat sources laying on a grid of non-overlapping patches that represents

the scene. To avoid the loss of temporal information, a decay function is used in such a way that

the beginning of the trajectory has less thermal energy than the current position. Also, to account

for noise in the trajectories, a thermal diffusion is applied around the initial heat sources. An

important problem with such a direct map from the trajectories is the same activity can lead to

different heat maps because of the variety of angles and lengths in people’s path. To account

for that, a key-point on the peaks of such heat maps is extracted and used to align the features.
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Figure 2.3 – Spatial temporal local (STL) descriptor.

Figure 4. Spatio-Temporal Local Descriptor. (a) Space around an-
chor person (blue) is divided into multiple bins. The pose of the
anchor person (blue arrow) locks the “orientation” of the descrip-
tor which induces the location of the reference bin “1”. (b) Ex-
ample of STL decriptor - the descriptor is a histogram capturing
people and pose distribution in space and time around the anchor
person. (c) Classification of STL descriptor is achieved by decom-
posing the histogram in different levels along the temporal axis.

each person in the scene. Ultimately, we gather a collection
of STL descriptors, one per individual being tracked.

Since the STL descriptor captures spatial variation over
time, the relative motion of each human in the scene is
implicitly embedded in the descriptor. Furthermore, since
tracking is performed in 2D 1/2 scene coordinates, we are
able to apply the STL descriptor to the bird’s eye view of
the scene. This helps the descriptor to be robust to perspec-
tive as well as view-point changes and to implicitly capture
the motion and velocity of each individual with respect to
that of the anchor in 2D 1/2 scene coordinate.

3.6. Classification

Our system classifies each person in the video sequence
at every N = 10 frames by choosing the class that best ex-
plains the evidence (observation) arsing from STL descrip-
tors as well as the velocity of an anchor person. We assume
that these observations are independent, thus the classifica-
tion step can be expressed as follows,

Ĉ = arg max
C

P (C|eS , eV ) (7)

P (C|eS , eV ) ∝ P (eS , eV |C) (8)
= P (eS |C)P (eV |C) (9)

where eS , eV indicate the evidence brought by the STL
descriptor and velocity descriptor respectively, and C indi-
cates an activity class.

Evidence arising from STL descriptors is obtained as fol-
lows: descriptors are constructed for each tracker at time
t for an empirically chosen fixed length duration T =
[t − 31, t + 32] (roughly 2 seconds ≈ 64 frames). Once
the descriptor is built, libSVM toolbox [6] and a pyramid-
like kernel[19][18] are used to classify each descriptor. In-
stead of dividing feature space or spatial coordinates into
levels, we iteratively divided the temporal axis so as to ob-
tain 4 levels in total (see Fig.4). The pyramid matching
kernel is very useful in our framework, since it can cap-
ture various degrees of information about the distribution of
people around each anchor person - the correlation across
density distributions at the lower level; the relationship be-
tween people movements at the higher level. The likelihood
P (eS |C) was provided by libSVM[6].

Since STL descriptor cannot capture the movement in-
formation of an anchor person, we considered evidence aris-
ing from per-person velocity. Average velocity (magnitude
and direction aligned along the pose) of each person in each
time segment (T ) was estimated and discretized using a
one-out-of-K coding scheme (K = m ∗ n, with m bins in
magnitude and n bins in angle). P (eV |C) is estimated by
counting the occurence of such encodings in each activity
class.

Each segment of frames is classified independently.
However, additional temporal regularization can help the
classifier to be more robust. We employed a Markov Chain
so as to enforce temporal constraints between the same per-
son’s activities in different time segments (Eq.10). The tran-
sition probability P (Ct|Ct−1) was estimated by counting
the occurences of each activity transition in each video of
the training set.

P (Ct|eS , eV , Ct−1) ∝ P (eS , eV |Ct)P (Ct|Ct−1)P (Ct−1)
(10)

4. Experimental Results

4.1. Dataset

Our goal is to classify human activities based on collec-
tive behavior of individuals under general conditions. Since
there is no existing dataset that can be used for evaluat-
ing our framework, we created our own dataset [1]. Unlike
many existing datasets, our dataset is acquired under uncon-
strained real-world conditions. Over 40 short video clips
of crossing, waiting, queueing, walking and talking action
categories were recorded. The videos are 640x480 pixels
in size and were recorded using a consumer hand held cam-
era. See fig.9 to gain understanding of the complexity of the
scenes. Every tenth frame of all video sequence was manu-

Source: (CHOI; SHAHID; SAVARESE, 2009)

Finally, the classification is performed by surface fitting of a previously trained and a current heat

map surface. Their method, yet simple, is able to detect activities like turn, follow, overtake, etc.

Also based on trajectories alone, the work of Huis et al. (HUIS et al., 2014) attempts to

recognize events such as pickpocketing based on the sequence of actions such as walk, meet,

split, loiter, etc. Features such as speed, distance, direction and angles between tracks are

used to detect the actions according to predefined rules – e.g. a person is considered to be

loitering if his/her trajectory has a speed smaller than 3km/h for longer than 4 seconds. Once the

events related to pickpocketing are identified, an alert can be raised in Closed-Circuit TeleVision

(CCTV) systems. Bouma et al. (BOUMA et al., 2014) extended this work by employing more

flexible features, such as the number of nearby persons, speed and distance after a split and

orientation changes. These serve as input to a classifier (Fisher linear discriminant classifier) that

can recognize pickpocketing situations in a real scenario.

Cheng et al. (CHENG et al., 2014) represented the problem of group activity recognition

using a three-layered approach that gathers information about the individuals performing the

actions, the possible pairs between two people and small groups. The motion features that

are extracted are also defined in these layers. First, each trajectory is modeled using Gaussian

processes. Additional information, such as location change since the beginning of the sequence,

the average velocity and the velocity ratio are also added as features. Context information is

extracted by comparing both the location and velocity of an individual with relation to the others.

They also propose the use of the participants shape to describe an activity. These so-called action
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style features are Histograms of Oriented Gradients (HOG) of the people in the group, which

is shown to discriminate correctly between different actions performed by individuals such as

standing and fighting. Similar to the work of Jacques et al. (JR et al., 2007), a geometric shape is

used to analyze the group formation. In order to do this, the Delaunay triangulation algorithm

is applied to the polygon that connects the people in the scene. Finally, these descriptors are

used for training and classification. First, the descriptors are clustered using K-means to generate

visual words and then SVM is used to classify samples.

The work of (LI; CHELLAPPA; ZHOU, 2013) proposed a descriptor strategy for motion

information of group activities that is compact and discriminative. First, the method computes

a tensor that relates each subject being tracked with the others at all the time steps. To fill this

tensor, the relation between two subjects at two possibly distinct times can be computed as the

Euclidean distance between their two centers of mass or the inner product of the velocity vectors

– indeed, the authors show in the paper how to fuse different tensors computed using different

features. A tensor reduction is used to compute a more compact and view-stable features. The

final descriptors are used for classification through a probabilistic framework that is described in

the manifold of these reduced features.

More recently, there is a number of approaches modeling the problem of group activity

using recurrent neural networks (RNN). The approach of Deng et al. (DENG et al., 2016) explores

two main ideas. First, that the context of other people in the scene can remove ambiguity in the

inference of an individual action. Second, that recognizing which subjects are interacting (or not)

with each other is an important property to perform collective activity recognition. Following

this, a Convolutional Neural Network (CNN) whose input is the frame window of a person

detection is used to classify individual actions. In addition, the whole frame is given as input to a

different CNN that tries to classify the group activity from a single image. A graphical model

and an RNN is used on top of these classifiers to refine these results based on relations among

entities.

IBrahim et al (IBRAHIM et al., 2016) proposed a 2-layer hierarchical model based on

long short-term memory models (LSTM) – a type of RNN architecture. In the first stage, an

LSTM is used to represent temporally the action of each person. Again, a CNN is used to extract

features inside each bounding box, which will serve as input to the model. The second layer is

responsible for modeling the temporal dynamics of the group activity. It achieves that purpose by

analyzing the individual actions and temporal changes of person actions as a whole – a pooling

layer is used to aggregate relevant information from the first level. The presented results did not

achieve state-of-the-art performance for small datasets, yet the method seems promising in larger
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ones, such as the volleyball dataset proposed by the authors themselves.

Despite the fact that RNNs can accommodate complex inference models, is not entirely

clear at this point how well they generalize across different scenarios and if the training set needs

to be as large as in many other RNN applications.

2.4 Conclusion of the chapter

As exposed in the Introduction (Section 1), our ultimate goal is to understand what is

happening in the scene observed by a single camera and how people are interacting. The methods

covered in this chapter present different challenges that arise in a surveillance environment. One

critical aspect of it is that tracking (and subsequently, collective behavior analysis) should present

small latency times. Methods based on global optimization along the temporal axis could be

impractical in many real applications if they rely heavily on future frames. For example, in case

of detecting events such as pickpocketing or loitering, it is important that the system alert the

supervisor as soon as possible so he/she can act on them.

Another important aspect that is not addressed extensively in the literature is the loss

of generality when trajectories are recovered in the image plane rather than the world. This

becomes evident when analyzing people position and orientation to determine which activities

are being observed by a camera. For some methods, once the trajectory is recovered in image

coordinates, it is difficult to extend this information to complete different scenarios due to the

variety of camera setups encountered in the wild. Therefore, the use of actual distances (in

the world coordinate system) is useful for behavior analysis. Moreover, because some relevant

activities are rather non-usual, the training should be able to build a model that is discriminative

using only a small number of training samples.

Due to this challenges, we propose the use of calibration in the tracking stage, which can

improve tracking results and also provide discriminative features for event recognition based

on world coordinates. To alleviate the limitation of using calibrated cameras, we propose an

automatic self-calibration scheme to be applied prior to tracking. Additionally, our tracking

method is causal such as can be applied in online scenarios with near real-time performance. In

the next chapter, we cover in details our approaches to self-calibration, tracking and collective

behavior.
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3 PROPOSED METHODS

In this dissertation, instead of approaching each isolated problem, we devise contributions

in three main areas that are inter-related: camera self-calibration, pedestrian tracking and

collective behavior recognition. These steps have the ultimate goal of extracting interactions and

group behaviors from the set of people observed by a static surveillance camera. Additionally,

one strong contribution of the dissertation is to show how calibration can be used in the typical

video surveillance pipeline, enabling the methods of pedestrian tracking and people detectors to

be more accurate and faster. Also important is the proposed use of calibration to extract relevant

inter-personal distances for obtaining interactions (and subsequently, group events) based on

known psycho-social distances, being also more suited to a wider range of camera setups.

We first propose a fully automatic self-calibration method that only uses information

extracted from people in the scene to calibrate static cameras. The method is described in 3.1,

together with applications in pedestrian detection, tracking and scene geometry understanding.

The multi-pedestrian tracker is described in Section 3.2. Our approach relies on multiple image

cues such as patch-based matching, motion prediction and association of pedestrian detection.

We combine the ensemble of displacement estimates for each target in the WCS using the camera

projection matrix. Also using calibration, we discuss how to simplify scale estimation and reduce

the target search region between two adjacent frames. Finally, we describe our proposal for

collective behavior recognition in Section 3.3. The method is composed of two classifiers in

sequence: the first is responsible for estimating non-symmetrical interactions between pairs of

pedestrians, while the second aims at classifying group activities appearing in the sequence.

Our lightweight interaction descriptors are built by analyzing the distances between a pair of

targets inside a temporal window through histograms, using bins that are defined according

to psychosocial work by Hall (HALL, 1973). Our collective behavior descriptor consists of a

histograms of pair-wise interactions, a factor representing the group shape dynamics and its

mean velocity.

3.1 Self-calibration

Instead of using artificial patterns to calibrate cameras, self-calibration aims to use natural

structures from the scene to infer camera parameters. The seminal work of Lv et al. (LV; ZHAO;

NEVATIA, 2002a) in this area proposed the use of pedestrians to calibrate a static camera. In their

work, different detections of the same person are assumed to be vertical poles that are parallel in
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Figure 3.1 – Overview of the self-calibration technique proposed in this work
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the WCS. By analyzing the vanishing points and horizon line extracted from combining these

poles projections, it is possible to estimate the camera projection matrix. Our method is based

upon this idea of using poles to calibrate a static surveillance camera, but further refined to

reduce the error of re-projected poles. Our approach is composed of three stages, as illustrated in

Figure 3.1.

We assume in this dissertation that multiple people can be fully observed (from feet to

head) from a single static camera and that the ground is in fact planar, which is reasonable for

most surveillance scenarios. Additionally, we differ from methods such as such as (HUANG et

al., 2016; GUAN et al., 2016), in which the problem of co-linearity of feet and head points (in

3D) is explicitly addressed. In surveillance scenarios, where multiple pedestrians are typically

present, that the assumption that the points will not be co-linear should not be a major concern.

In the proposed formulation, we also assume that the heights of people observed in the scene

averages to an specific value. However, this value can be changed in order to accommodate

unusual distributions. Finally, we assume the classical pinhole camera model without radial

distortion, so that the final goal is to estimate the 3× 4 projection matrix P .

The first stage of the proposed algorithm, described in Section 3.1.1, estimates the line

segment along the body of each detected pedestrian connecting the head to the feet from a given

set of frames. In the remainder of the text, we refer these segments as people poles, which

represent the height and the orientation of each detected pedestrian. The second step uses the

endpoints of these extracted lines, and it is responsible for computing a rough approximation

of the camera matrix using a modification of (LV; ZHAO; NEVATIA, 2002b)1, as described in

Section 3.1.2. The final phase consists in a non-linear optimization that aims to minimize the

re-projection error of the poles in the image. This optimization can greatly increase the quality

1Please notice that other methods can provide a first calibration estimate for our non-linear optimization phase
and thus can be applied in our pipeline
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of the self-calibration, as demonstrated in the set of experiments described in Section 4.1.

3.1.1 Extracting people poles from a set of images

In order to extract the people poles, pedestrian detection and background segmentation

are applied to each frame. More specifically, the pedestrian detector proposed in (DOLLÁR;

BELONGIE; PERONA, 2010; DOLLÁR et al., 2009) is applied to each frame2 and, for each

resulting bounding box, the foreground within this region is extracted using a background

segmentation approach (BARNICH; DROOGENBROECK, 2011). The foreground is first used

to eliminate false positives occurred during the detection phase by computing the ratio between

the number of foreground pixels and the total number of pixels inside the bounding boxes – the

detection is rejected if this ratio is below a given threshold ta, which possibly indicates a false

positive detection.

To compute the orientation of the poles, we propose a technique similar to the method

used by Lv et al. (LV; ZHAO; NEVATIA, 2002b). The coordinates of all foreground pixels inside

a detection bounding box is fed to the Principal Component Analysis (PCA) procedure, which

returns the two main axes of variance of the points. The major axis of variance is assumed to

be the vertical orientation of the person inside the bounding box. To detect the feet and head

points, we initially compute the line inside the bounding box that passes through the centroid

of the foreground points and has orientation given by the major axis. Along this line, the first

and last foreground points are extracted and assumed to represent the feet and head endpoints,

respectively.

The ratio between the highest and the lowest eigenvalue provided by the PCA is also

computed for each pole. This value is the ratio of variances along the minor and major axes of the

underlying ellipse characterized by the covariance matrix. If this value is above a threshold qs the

pole is rejected because it may represent that the pedestrian has its legs apart or the background

segmentation was not well computed in that region. This in turn can result in noisy pole estimates,

which could compromise the calibration procedure. The pole extraction procedure is illustrated

in Figure 3.2.

This procedure also reduces the number of extracted poles by keeping what we expect to

be the best ones. However, we use a simple threshold and do not compute pedestrian walking

cycles to estimate when the legs are the closest to each other, as in (LV; ZHAO; NEVATIA, 2002b).

The reasoning behind this was that the original method of Lv et al. (LV; ZHAO; NEVATIA,

2Other detectors could be used instead. See (ENZWEILER; GAVRILA, 2009) for a comprehensive list.



32

2002b) was intended to calibrate a camera that only observes a single pedestrian throughout a

sequence of frames, which may be a limitation for real scenarios (such as surveillance). Our

approach does not present such constraint and, furthermore, does not require a set of temporally

adjacent frames as (LV; ZHAO; NEVATIA, 2002b), used to extract walking cycles. Instead, we

use the poles related to different pedestrians (and possibly obtained at sparsely sampled frames

in time) to obtain an initial estimate of the projection matrix, which is refined later.

3.1.2 Projection matrix initialization

As we present in Section 3.1.3, our non-linear optimization has two requirements as

input: the set of poles extracted in the image and an initial projection matrix. The former was

addressed in the previous section and the later can be provided by different (linear or non-linear)

self-calibration methods (LV; ZHAO; NEVATIA, 2002b; LV; ZHAO; NEVATIA, 2006; JUNEJO;

FOROOSH, 2006). We propose a method based on the extraction of the vertical vanishing point

and horizon line of the image that follows the line of (LV; ZHAO; NEVATIA, 2002b).

There are different methods for extracting the horizon line of an image (LV; ZHAO;

NEVATIA, 2002b; HOIEM; EFROS; HEBERT, 2008). One approach is to create, for each pair

of poles, two lines connecting the head and feet points. Then, the intersection point of these two

lines should lie in the horizon line, as previously shown in Figure 2.1(a). In our algorithm, each

pole is paired to all others poles that lie in a distance greater than a threshold dp, since nearby

poles tend to generate noisy vanishing points. Each pair of poles contributes to a point, and

RANSAC (FISCHLER; BOLLES, 1981) is used to fit the line that corresponds to the horizon. It

is important to point out that the theoretical background of the method requires that all people

have the same height (LV; ZHAO; NEVATIA, 2002b; LV; ZHAO; NEVATIA, 2006), which

can be imposed by using only the poles related to a single pedestrian. In fact, we carried out

experiments using a robust pedestrian tracker (BREITENSTEIN et al., 2011) to link poles related

to the same person, and the results were not better than using the poles of all people at the same

time. The reason is that the errors in estimating the pole orientation and endpoints are larger than

the actual difference of different people heights, so that we decided not to employ a tracker and

assumed an average height.

The vertical vanishing point encodes how the orientation of pedestrians changes for

different locations of the scene. This point corresponds to the intersection of the lines related to

the poles of any pair of pedestrians. As described for the horizon line procedure, we choose all

possible pairs of poles whose distances are greater than dp. Outlier points can appear if a pair of
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Figure 3.2 – The extraction of people poles. In (a), a detection is rejected due to insufficient foreground
and, for a different pedestrian, the major axis is obtained trough PCA computed from the mask pixels
locations. (b) shows the poles extracted lay on top of the original image.

Rejected
not enough foreground qs = 0.084

(a)

(b)

Source: Author

poles is nearly parallel3 or if the orientation was poorly estimated due to a number of factors,

such as occlusions or noisy background segmentation. Therefore, the x and y coordinates of

the final vanishing point is taken to be the median value in each dimensions of all intersection

3Actually, depending on the measure applied, one can think that all lines are nearly parallel. However, when
computing vanishing points from it, a cluster near the truth vanishing point will appear, yet some vanishing points
will be far from it due to poor pole extractions.
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points. Once the vanishing point and the horizon line are extracted, it is possible to extract a

projection matrix P̃ if a given height is assumed for the set of pedestrians observed. See (LV;

ZHAO; NEVATIA, 2002b) for more details on how to accomplish this task.

3.1.3 Non-linear optimization

Since the computation of the initial matrix P̃ is based on the vertical vanishing point

and horizon line (as described in the previous subsection), a small error in the extraction of

people orientations can lead to rather large errors in the projection matrix. In particular, lower

resolution video sequences are more error-prone, since they tend to present larger errors in the

pole estimation due to the small size of pedestrians. Indeed, we observed in our experiments

that our initial method, while it generally provides a good ground plane calibration, it fails to

correctly estimate the vertical axis Z (see Fig. 3.4(a)). Therefore, given P̃ =
[
p̃1 p̃2 p̃3 p̃4

]
,

we want to find a refined camera matrix P =
[
p̃1 p̃2 p3 p̃4

]
that inherits the good ground

plane homography achieved by P̃ , but improves the projection of vertical poles. For that purpose,

we propose to obtain the 3× 1 vector p3 by minimizing a distance function between the people

poles predicted using the camera projection and the poles extracted from the image.

Each extracted pole pie is characterized by its two 2D endpoints: the feet region point f ie
and the head point hie. We assume that all the extracted feet points f ie lie on the ground plane,

i.e. Z = 0. Assuming also that pedestrians are standing (as in most pedestrian detectors), the

projection of a vertical pole with a given height (e.g. the average height Zavg of a person) at the

location of detected pedestrians should approximately coincide with the corresponding extracted

pole pie.

To perform this projection, the feet point f ip of the predicted pole is set to be the same

point as the extracted one, i.e. f ip = f ie. The projected head point hip is obtained by mapping

f ip to world coordinates using the ground plane homography matrix H =
[
p̃1 p̃2 p̃4

]
, adding

Zavg to the height component and then projecting back to the image using P , leading to

wĥip = f̂ ip + Zavgih
T
3 f̂

i
pp3, (3.1)

where û denotes the homogeneous coordinates of a 2D vector u, w is the scale factor, and ihT3
is the third row of H−1.

Clearly, one key issue is the definition of the distance measure between predicted and

extracted pole that will guide the optimization problem. In several applications, it is important
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to keep coherence in the projection of the Z axis. For instance, some pedestrian trackers

(e.g. (FÜHR; JUNG, 2014)) explore the constant height of a person to improve their results;

also, an accurate projection of the pedestrian height can be used to reduce the search space and

discard false positive in pedestrian detectors based on sliding windows, as we show latter in this

dissertation. Furthermore, accuracy in the Z orientation is also crucial for augmented/mixed

reality applications.

The proposed error measure for a given extracted pole pje with respect to its projected

counterpart pole pjp obtained with projection matrix P is given by

Cj(P ) = αda
(
pje, p

j
p

)
+ (1− α) ‖hjp − hje‖, (3.2)

where da is a function that computes the angular difference (in radians) between two poles, given

by

da (pe, pp) = arccos

(
qe · qp
‖qp‖‖qp‖

)
, (3.3)

where qe and qp are the vectors representing the poles pe and pq (respectively) centered at the

origin [0, 0]. The parameter α ∈ [0, 1] in Eq. (3.2) is the balancing weight used to control the

influence of each term in the optimization process. It is important to remember that the two

errors are given in different units – one is a distance in pixels and the other is an angle in radians.

Depending on the application that uses the calibration a different α should be chosen. For

instance, if the low angular errors are preferred, larger values of α should be used. Conversely,

smaller values should be used if the pixel-wise euclidean distance is to be minimized.

The total cost function C(P ) is then defined as

C(P ) = C(p3) =
∑
pje∈Sin

Cj(P ), (3.4)

which is the summation of individual pole errors within a subset Sin of the poles extracted in the

first stage. More precisely, if S = {p1e, p2e, . . . pne} denotes the set of the n originally extracted

poles, then Sin ⊂ S is the subset composed by all the inliers with respect to the cost function

Cj(P̃ ), where P̃ is the initial estimate of the projection matrix as described in Section 3.1.2. To

obtain these inliers, the third quartile of Cj for all poles, denoted by Q3, is extracted along with

the interquartile range, IQR. Then, a given pole pje is considered an inlier (i.e. is assigned to set

Sin) if Cj(P̃ ) < Q3 + 1.5IQR (HAN; KAMBER, 2001).

Another issue related to the proposed cost function is that the re-projection error tends

to be smaller in image regions containing a higher density of pedestrians, since C(P ) is the
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summation of individual pedestrian re-projection errors (and denser regions implicitly carry more

weight). Although one could introduce a weighing factor to penalize the influence of denser

regions, we decided for a sub-sampling approach that aims to balance the density of poles along

the ground plane, and also reduces the computational cost (since the number of calculations in

C(P ) is reduced).

For the selection of samples, we divide the ground plane in squares of equal size and

project the corresponding grid onto the image using the homography matrix H . Within projected

squares containing at least one pole, we compute the average number of poles np per square.

Then, in squares for which the number of poles is above np, we randomly select a subset of np

poles, also removing poles that lie sufficiently close to an existing pole (a minimum distance

threshold of 5cm was imposed). An example of our sampling procedure is shown in Fig. 3.3. As

it can be observed, the procedure provides a more uniform distribution of the poles in the scene

(right).

Figure 3.3 – Sampling of the person poles using the ground plane homography. Left: original set of
poles. Right: sampled set of poles.

Source: Author

It is also important to point out that our cost function C(P ) = C(p3) given by Eq. (3.4)

involves a 3-DOF variable p3, since the optimized projection matrix P inherits the ground plane

homography from the initial estimate P̃ . For the sake of comparison, we also performed a full

optimization of P (i.e., all the 11-DOF elements of P ) using P̃ just as an initial approximation.

However, we noticed in our experiments that solving for the full projection matrix P often

results in very poor calibration matrices, probably due to local minima of the cost function. The

resulting projection matrix, while it produces small errors according to Eq. (3.4), tends to corrupt

the ground plane homography. Fig. 3.4 shows the ground plane grid and the projection of vertical

poles for the initial calibration matrix P̃ , and the refined matrices P ′ (optimizing all elements)

and P (optimizing only the third row, which is the proposed approach). As it can be observed, P̃
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does a good job at the ground plane, but the quality of the orientation degrades (particularly for

the poles on the left). Matrix P ′ produces projected poles very similar to the estimated ones, but

ground plane homography was completely degraded. Finally, the projection matrix P optimizing

only p3 mantains the good ground plane homography of P̃ , at the same time reducing height and

orientation errors of the projected poles.

Figure 3.4 – Non-linear self-calibration. Red poles were predicted by the projection matrix, and the blue
ones were extracted from the video sequence. (a) The calibration resulted from the first stage (P̃ ) . (b)
Non-linear optimization in all the projection matrix elements (P ′) (c) Non-linear optimization in the third
column of the matrix (P ).

(a) (b) (c)

Source: Author

Finally, different non-linear optimization methods can be used to produce the final

projection matrix. Indeed, two methods, namely the Simplex method (LAGARIAS et al., 1998)

and the Levenberg-Marquardt-Fletcher (FLETCHER, 1971), were employed with successful

results. See the experiments (Section 4.1) for details.

3.1.4 Applications for calibrated cameras

In this section, we present how the proposed self-calibration scheme can improve pedes-

trian detection within current state-of-the-art frameworks. We also discuss a simple yet useful

application of simulating the placement of cameras in a surveillance scenario. It is worth noticing

that our multi-target tracker also benefits from calibrated camera, but the method is presented

separately in Section 3.2.

3.1.4.1 Improving pedestrian detectors

A common approach for pedestrian detection based on sliding windows is to classify

image patches at several different scales, which is typically done using pyramids of images,

pyramids of classifiers, or a combination of both (DOLLÁR; BELONGIE; PERONA, 2010).
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However, there is only a small range of scales that relate to the dimensions of a pedestrian for

a given pixel location, as illustrated in Fig. 3.5. More precisely, Fig. 3.5(a) shows a fixed-size

scanning window, which is plausible for the nearest woman in the picture, but too large at the

other locations illustrated. Fig. 3.5(b) shows geometrically-aware windows, for which the size

depends on the ground-plane location related to the camera and a fixed pedestrian height.

Figure 3.5 – Example of detection windows with (a) fixed size, which lead to implausible pedestrian
heights at some points, and (b) adaptive size, depending on the ground plane location.

(a) (b)

Source: Author

Using camera calibration to improve detectors has been tackled before in the literature.

Notably by Hoiem and colleagues (HOIEM; EFROS; HEBERT, 2008) which explored a simpli-

fied camera model (knowledge of the horizon line) and local object geometry to improve the

performance of object detectors. In this work, we rely on a better camera model (full calibration)

and drop the local geometry constraint.

For a given bounding boxB, letEB denote some kind of pedestrian image-based evidence

computed on B (e.g HOG or Haar-like features), and let ZB denote its height in the WCS

computed using the known camera parameters, assuming that the base of the bounding box is on

the ground plane4. Following a Bayesian classifier, a pedestrian is detected when

P (ped)p(EB, ZB|ped) > P (¬ped)p(EB, ZB|¬ped), (3.5)

where p(EB, ZB|ped) and p(EB, ZB|¬ped) are the joint PDFs of EB, ZB for the pedestrian and

non-pedestrian classes, and P (ped) and P (¬ped) are the corresponding a priori probabilities.

Assuming that ZB and EB are independent and that p(ZB|¬ped) follows a uniform distribution,

4Notice that this assumption is different than saying that the pedestrian feet lay on the ground plane. Moreover,
some detectors were trained with significant padding around people. However, such padding can be easily
compensated by growing the bounding box in the image plane by a fixed factor.
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inequation (3.5) reduces to

p(EB|ped)

p(EB|¬ped)
p(ZB|ped) > T, (3.6)

where T is a fixed threshold.

Considering that the score R(EB) of any “baseline” pedestrian detector can be used to

approximate the likelihood ratio p(EB|ped)/p(EB|¬ped) (disregarding normalization issues)

and that p(ZB|ped) follows a normal distribution with mean Zavg and variance σ2, the proposed

detector is given by

S(B) = R(EB) exp

[
−(ZB − Zavg)2

2σ2

]
> TS, (3.7)

where the acceptance threshold TS is inherited from the baseline detector R(EB). Due to the fast

decay of the normal distribution, just a few bounding boxes B with WCS heights in the range

[Zavg − kσ, Zavg + kσ] are needed in practice for each location.

For detection methods that rely on image pyramids, a classifier is trained with a pre-

defined pedestrian model size, typically a rectangular region with height zmodel. In traditional

sliding-window methods, the model is kept constant and the image is re-scaled to capture

pedestrians at different scales: upsampling is required to detect pedestrians smaller than the

model, and downsampling for pedestrians larger than the model. In general, just downsampling

is applied, so that the smallest detectable pedestrian in the scene is roughly the height of zmodel.

Given a maximum pedestrian height Zmax = Zavg + kσ (in the WCS), our method only creates

candidates in which the height of the corresponding bounding box height is larger than a fraction

of the height of the model bounding box zmodel. This fraction depends on the height range of

pedestrians in WCS and its value can be employed in order to limit the number of levels of the

pyramid.

The largest pedestrian in the image should dictate the smallest resolution of the image

pyramid. Since the pyramid is pre-computed in some methods to speed-up the process (as in

(DOLLÁR; BELONGIE; PERONA, 2010)), the use of a calibrated camera can also define the

smallest scale of the pyramid. Given a pedestrian with size zped (in the ICS), the ideal scale s in

the pyramid should satisfy 2−szmodel = zped (assuming that the scale factor is 2−s). Hence, we

scan all image pixels related to the ground plane and compute the projection of a pedestrian with

the maximum allowed size Zmax, retrieving the height of the largest bounding box in the ICS,

called zmax. Hence, the smallest scale in the pyramid is defined as s = log2(zmodel/zmax).
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Finally, our candidates are evaluated in this reduced pyramid using the test given by

Inequation (3.7). Furthermore, as usual in sliding-window techniques, the final detection is

achieved after performing non-maxima suppression to the outputs of S(B).

To show the potential of our method, we used as the baseline pedestrian detector the

method presented in (DOLLÁR; BELONGIE; PERONA, 2010), and our experimental results

show that detection accuracy were increased using camera information. We also present results

modifying the classical HOG+SVM detector by Dalal and Triggs (DALAL; TRIGGS, 2005).

It is important to know that our idea to generate candidates could also be applied to different

detection approaches. Even modern CNN detectors based on region proposals could profit from

a geometry-specific creation of candidates. A clear example would be to use our candidate

generation algorithm instead of selective search (UIJLINGS et al., 2013) in the pipeline of the

R-CNN (GIRSHICK et al., 2016) detector – because we only analyze the geometry and not the

image itself to generate bounding box proposals, our method should be much faster. Besides,

other calibration methods than the one described in the previous sections could be used instead.

In fact, we coupled our detection strategy with a different method of self-calibration, designed for

use in on-board vehicular cameras (PAULA; JUNG; SILVEIRA, 2014; FÜHR; JUNG; PAULA,

2016) that explores the visible lane geometry.

3.1.4.2 Using calibration to place virtual cameras

As we saw in the previous section, coupling calibration with detection can greatly

simplified this problem. Besides that, there are other types of information that can be directly

inferred from the calibration which might be useful for some applications. We explore a small

use case of simulating the placement of cameras in surveillance scenario. One key aspect when

planning a surveillance system is to define the number and location of cameras to cover interesting

regions of the environment. We propose a tool to accomplish that based on augmented reality.

Given a calibrated camera that provides an overall view of the scene (e.g. a wide field-of-view

passive camera (QURESHI; TERZOPOULOS, 2007)), we developed an application that allows

the user to place a virtual camera (with known intrinsic parameters, so that different cameras can

be emulated) at different locations of the scene with a few mouse clicks, and then preview the

feed captured by the camera at different orientations, emulating a pant-tilt-zoom (PTZ) camera.

In the proposed system, the user initially clicks on a ground-plane pixel and then defines

the camera height Z (in the WCS). The camera location in the ICS is obtained similarly to the

poles extraction used in the calibration step (see Eq. (3.1)), generating a “virtual pole” in the real

scene, on top of which the virtual camera will be placed.
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Given the location X0 = (X, Y, Z) of the virtual camera, its resolution and intrinsic

parameters encoded in a 3× 3 matrix K, as well as the rotation matrix R (computed from the

pitch, roll and yaw angles defined by the user), the projection matrix of the virtual camera is

given by (HARTLEY; ZISSERMAN, 2000):

Pv = K
[
R | −RX0

]
=
[
pv1 pv2 pv3 pv4

]
. (3.8)

Hence, the homography matrix that maps the ground plane to the image plane of the

virtual camera is given by Hv =
[
pv1 pv2 pv4

]
, so that any image pixel (in homogeneous

coordinates) û on the ground plane maps to another pixel (in homogeneous coordinates) ûv of

the virtual camera through

wûv = H−1v Hû. (3.9)

Fig. 3.6 shows an example of virtual camera placement based on a frame of the TownCen-

tre dataset (BENFOLD; REID, 2011), widely used for vision-based video surveillance. In this

example, a virtual camera with focal length of 1000 px and resolution of 640×480 was placed on

the top right region of the scene, and the planar area viewed by the camera is highlighted in red. It

is important to note that our system only provides the ground plane projection, so that occlusions

due to non-planar objects in the field of view of the virtual camera are not handled. However,

the proposed self-calibration approach could also be used to leverage interactive methods for

image-based 3D reconstruction, such as (JIANG; TAN; CHEONG, 2009), allowing the inclusion

of 3D objects as well in the camera preview.

Figure 3.6 – Ground plane coverage (in red) of the virtual camera using our self-calibration.
Virtual camera

Source: Author
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Fig. 3.7 illustrates the Graphical User Interface (GUI) that we developed applied to PETS

dataset. This example illustrates the placement of two virtual cameras at existing structures (one

is placed on a light post, and the other on the wall of a building, indicated by blue arrows), as

well as the corresponding planar views. The GUI allows to interactively change the focal length

and camera rotation parameters, allowing to evaluate the coverage provided by PTZ cameras.

Figure 3.7 – GUI interface to help the user understand the best camera configuration for a desired
coverage of the scene.

Source: Author

3.2 Multiple-person tracking

The goal of our multiple-person tracking is to extract the trajectories of multiple pedestri-

ans observed by a single static surveillance camera. As stated in the Introduction (Sec. 1), we

use camera calibration to ease the task of tracking, assuming that a camera projection matrix is

provided. From that, we also take the assumption that the ground surface is planar and that the

people heights are constant during the scene. Furthermore, we assume that people appearing

in the scene have a vertical orientation in the world coordinate system, which is expected for

walking pedestrians. As it would be presented later, we represent our targets by using patches

that aligned in the WCS, which project to non-aligned patches in the image domain. However,

as it is common in the literature, the adopted pedestrian detector (DOLLÁR et al., 2009) in

our framework assumes that people appear mostly in upright positions. Tracking can represent

the sole goal of a system and its final output can appear in different forms, depending on the
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semantic level of information desired (e.g. 2D trajectories vs. 3D trajectories, rigid body vs.

deformable parts). In this dissertation, we are interested in a method that will provide enough

information for our collective behavior extraction algorithm. In this context, it is important that

our tracker should be both causal, aiming to reduce delays on the whole system, and extract

ground plane trajectories, so that the final goal (collective behavior detection) could be applied

to a wider range of camera setups. With that in mind, we devised an online method that is able to

combine different cues of information to track pedestrians, making use of camera calibration at

several stages in the process.

The proposed approach consists of initially detecting the targets (pedestrians), and

representing each target as a set of patches. The patches related to each pedestrian are then

tracked individually, and their motion patterns are combined in a robust manner in the WCS

using a Weighted Vector Median Filter (WVMF). We deliberately chose to not rely too much

on appearance features, since different people can appear to have very similar appearance in a

surveillance scenario – specially when the quality of the streams are of only moderate quality. A

predicted motion vector and a pedestrian detector are also included in the tracking framework to

improve accuracy and to better handle occlusions. The steps of the proposed method are detailed

next.

3.2.1 Automatic initialization and patch creation

The first step of our approach is to initialize the tracks using a combination of pedestrian

detection and background removal in an automatic procedure. For the detection step, although

several algorithms may be used, we once again have chosen the detector proposed by Dollár et

al. (DOLLÁR; BELONGIE; PERONA, 2010), which presents a good trade-off between accuracy

and speed. After the bounding boxes of the pedestrians are found in the image by running this

algorithm, the next step is to validate the detection results (i.e. to remove false positives) and to

obtain a more accurate representation of each person, which will be used to create the multiple

patches. For that purpose, we apply a background removal algorithm to extract the foreground

blobs at each frame. Again, there are innumerous background removal algorithms proposed in

the literature and we have chosen ViBE (BARNICH; DROOGENBROECK, 2011) due to its

good performance for surveillance videos and its capability of adapting the background model at

runtime.

For each detected pedestrian, we compute the percentage of foreground pixels inside the

bounding box. If this value is below a threshold ta, the detection is rejected as a false positive
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– notice that this is the same scheme used in the proposed self-calibration method to remove

incorrect detections. For the detections that were considered valid, the objective is to find a line

segment along the body of each person that will be used to align the patches. To this end, several

“body hypotheses” are created by considering line segments that originate from the lower portion

of the bounding box (possible feet candidates), and that project to vertical line segments in the

WCS (we assume that pedestrians are standing). Again, we tried to achieve a similar goal in the

self-calibration method when we extracted the so-called people poles. However, here we already

have the camera calibrated, so we make use of it to generate a better vertical alignment w.r.t. the

target.

More precisely, we define a set of feet candidates [uf , vf ]
T using the lower edge of the

bounding box which is sampled to create these points. For each candidate, we compute the

corresponding ground plane coordinates [Xf , Yf ]
T using the ground plane homography H , as

follows:

w


Xf

Yf

1

 = H−1


uf

vf

1

 . (3.10)

So, each feet candidate [uf , vf ]
T point is used to generate a vertical 3D-line defined as

x = Xf , y = Yf and z > 0. These lines are then projected into the image plane using the camera

projection matrix. We define the best hypothesis as the one in which the projected line and the

foreground are best aligned. In order to discover that, we count the number of foreground pixels

that are both along the projected lines and inside the bounding box. To account for moving

people, we only use the superior two thirds of these lines. The line with the highest number of

foreground pixels is selected. Once the line along the body of a person is chosen, it is necessary

to recover both of its end points, located in the person’s feet and head points. Obviously, the feet

point is the candidate [uf , vf ]
T that generated the best hypothesis. The head point is simply the

last foreground pixel that is intercepted by the projected line found in a bottom to top search.

This procedure allows the method to correctly estimate the body orientation even if the bounding

box provided by the pedestrian detector is not accurate, and can also cope with different leg

positions (spread apart or close together).

Finally, the patches are created such that their centers lay on the line segment related to

the body of the person. The total number of patches Np created at initialization is defined by the

user. The width of the patches is also defined by the user and its value usually depends on the

desired pacth aspect ratio. It is important that this definition does not include too much of the

background, otherwise the matching may diverge to it. As we are going to present in the next
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section, the tracking procedure uses the height of the patches (in the WCS) to reconstruct the

displacement vector of each patch. Therefore, the z coordinate of each patch center is extracted

by using the ground position [Xf , Yf ]
T and the camera projection matrix in Equation (3.13).

Later, we refer to this value as the height Li of the central point of patch i.

Figure 3.8 illustrates the automatic initialization procedure. An example of pedestrian

detection for a given frame is shown in Figure 3.8(a), and the foreground pixels identified by the

background removal algorithm are shown in Figure 3.8(b). The line segments related to the body

of detected pedestrians are shown in Figure 3.8(c), and the corresponding patches illustrated in

Figure 3.8(d).

Figure 3.8 – Initialization procedure. First the pedestrians are detected (a). Then, a background
subtraction is performed (b) to localize the head and feet points of each foreground blob (c). Finally,
patches are created in alignment to this line (d).

(a) (b)

(c) (d)

Source: Author

The initialization procedure is performed at each frame to account for new people

appearing in the scene. To avoid duplicate tracks we reject all detections for which the overlap

between associated bounding boxes and any of the existing targets is above a percentage threshold.

The percentage is computed as the ratio between the intersection pixels and the total number

of pixels inside the bounding box of the detection. The threshold used in our experiments was

1%, so that we allow only virtually no overlaps. Indeed, we observed in our experiments that
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if the target is not already being tracked (and therefore needs to be initialized), it is better to

perform the initialization in a frame where the person appears alone and not occluded by some

other target.

3.2.2 Patch matching

Each pedestrian region is divided in a set of non-overlapping patches, which are tracked

individually. There are several potential features to be use to describe these patches, and a variety

of methods for computing the similarity between two image regions. Different methods can be

used in our tracking framework, with the only requirement that a distance metric is provided

to evaluate the similarity between two image regions. In this work we use color histograms as

features. It is clear that more recently proposed features, like those based on convolution neural

networks (SADEGHIAN ALEXANDRE ALAHI, 2017), would increase the accuracy of our

technique. Nonetheless, this dissertation is interested in providing a framework that is able to

combine different cues for tracking and analyze their relevances in the complete approach.

To better cope with illumination changes, the proposed histograms involve only the

chromaticity information in the CIELab space, i.e., channels a and b. For efficiency reasons,

we assume that these two channels are independent, so a given image region is described by

two normalized histograms ha and hb with Nb bins, so that they can be viewed as discrete

probability density functions. Given the histograms ham and hbm related to the model (for the a-

and b-channels, respectively), and given the corresponding histograms hai and hbi related to a

candidate region i, we use the Bhattacharyya distance between the candidate histograms and the

model histograms (GALL et al., 2010):

bi =
1

2

(√
1−BC(ham, h

a
i ) +

√
1−BC(hbm, h

b
i)

)
, (3.11)

where BC is the Bhattacharyya coefficient defined as follows:

BC(h1, h2) =

Nb∑
j=1

√
h1(j)h2(j). (3.12)

Given the patch model at a frame and a set of candidate patches in the subsequent frame,

the model patch is matched to the candidate patch that presents the smallest Bhattacharyya

distance. One simple way of creating the candidate patches is to determine a fixed region around

the previous position of the patch and then exhaustively search for the candidate that minimizes
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the matching distance, as in (ADAM; RIVLIN; SHIMSHONI, 2006; DIHL; JUNG; BINS, 2011).

However, since we are dealing with pedestrians and have knowledge on camera parameters, it

is possible to use the maximum displacement allowed for a person (in the WCS) to create a

customized search region.

More precisely, given the maximum speed smax (in meters per second) allowed for a

pedestrian and the frame rate Fr (in frames per second) of the video sequence, the maximum

inter-frame displacement for each pedestrian in the WCS is r = smax/Fr. However, to make the

tracker more adaptable to different situations and to allow it to recover from failure, we introduce

a relaxation parameter αr > 0 and compute an extended radius r̂ = (1 + αr)r. Also, to simplify

the geometry of the search region, we actually consider a square with dimensions 2r̂× 2r̂, which

encloses the circle with the maximum possible displacement. This square region is projected to

the image plane and then sampled to create the candidates. Additionally, instead of centering the

search region in the previous target position, we first compute a motion prediction vector based

on the displacement history of the target. This predicted vector is then added to the previous

position to generate a ground point which is used as the center of the search region. Section 3.2.3

presents the motion prediction step in details.

Figure 3.9 shows the projected region in two distinct frames. As the number of candidates

in a region is proportional to its size when projected, this value is not constant over time (the

search region is larger when the target is closer to the camera and smaller when it is far from the

camera).

Figure 3.9 – Search regions for a subject in two different frames (red dashed line). For clarity, the regions
shown here were multiplied by a scale factor.

(a) (b)

Source: Author

Once the patches are matched against the possible candidates, displacement vectors in

the world coordinate frame are extracted. More precisely, given the central points ci = [ui, vi]
T

of the patches in image coordinates, and di = [∆ui,∆vi]
T the associated displacement vector
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computed in the patch matching step, it is possible to estimate the motion vector in the WCS

based on the camera matrix (by assuming that the movement is parallel to the ground plane). First,

it is necessary to reconstruct the point that represents the displaced patch centermi = ci + di in

the WCS. This 3D point will be referred asMi = [Xi, Yi, Zi]
T. Assuming that any displacement

vector di corresponds to a translational displacement in the WCS that is parallel to the ground

plane, Zi can be set to a fixed value, namely the height Li of the patch computed at initialization.

The projection ofMi in the image plane is then given by Equation (3.13):

w


ui + ∆ui

vi + ∆vi

1

 = P


Xi

Yi

Li

1

 , (3.13)

where P is the 3× 4 projection matrix and w is the projection scale parameter. With the analysis

of equation (3.13), it is possible to assert that Xi and Yi are obtained by solving a simple linear

system of two equations and two unknowns. Finally, the displacement vector Di in the WCS

associated with the patch i is given by the difference between the reconstructed point [Xi, Yi]
T

and the world point associated with the original patch center [ui, vi]
T and reconstructed using the

same technique. The displacement vectors Di of each target will be robustly combined using

WVMF. Additionally, a prediction vector and a vector related with the nearest detection will also

be included in the filter.

3.2.3 Motion prediction

Pedestrians typically move along relatively smooth trajectories, without sudden turns.

Hence, given the temporal series of displacement vectors D(t) in the WCS, we can predict

the displacement vector Dp(t + 1) at the subsequent frame t + 1. Although there are several

predictive filters, we have used the Double Exponential Smoothing technique (LAVIOLA, 2003)

which is very efficient and has a prediction performance shown to be equivalent to Kalman filters

in the original paper (LAVIOLA, 2003) (in the context of predicting a user’s pose). A predicted

displacement vectorDp(t+ 1) is obtained with the following expression:

Dp(t+ 1) =

(
2 +

α

1− α

)
D′(t)−

(
1 +

α

1− α

)
D′′(t), (3.14)
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where α is the smoothing parameter,D′(t) andD′′(t) are auxiliary variables computed through

D′(t) = αD(t) + (1− α)D′(t− 1), (3.15)

D′′(t) = αD′(t) + (1− α)D′′(t− 1). (3.16)

The predicted motion vector can play an important role when all the patches were badly

matched (e.g. during a total occlusion). It may also be used to remove the jitter of the target

trajectories by continuously smoothing the current position with the displacement history.

3.2.4 Combining motion cues using WVMF

Let us consider a given pedestrian and a specific frame t, at positionX(t) in the WCS.

For this pedestrian, we have a set of Np displacement vectorsDi related to the individual patches,

and another displacement vector DNp+1 = Dp(t + 1) (in the WCS) related to the predicted

motion vector, as described in Section 3.2.3. In pedestrian tracking, it is natural to assume a

translational motion of the body (disregarding arms and legs movements), which is parallel to

the ground plane. In this context, all displacement vectors, when computed in the WCS, should

be similar.

The Weighted Vector Median Filter (WVMF) (ASTOLA; HAAVISTO; NEUVO, 1990)

is a flexible tool to compute weighted averages of vectors, implicitly detecting and removing the

influence of outliers. Hence, it seems adequate to combine all the displacement cues for a given

pedestrian (patches + predicted) into a single translational displacement in the WCS. Given a

set of N = Np + 1 displacement vectors (where Np is the number of patches), the first step of

WVMF consists of computing the distance from each vector to all others:

si = s(Di) =
N∑
j=1

‖Di −Dj‖, i = 1, ..., N, (3.17)

where ‖ · ‖ is a vector norm (in this work, we employed the L2 norm). The filtered displacement

vectorDf is then defined according to

Df =
1∑N
i=1wi

N∑
i=1

wiDi, (3.18)

where wi = f(si), and f is a nonnegative monotonically decreasing function (so that vectors
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that are farther from the median are associated with smaller weights).

As in (FÜHR; JUNG, 2012), we use a modification of the weights wi that also includes

the matching error bi of each patch in the filtering process, such that weight decreases as function

of both distance from the median and matching error. More precisely, the proposed weights for

the WVMF are given by

wi = e−
[
(si/β)2 + (bi/γ)2

]
, (3.19)

where β and γ are parameters that control the decay of the weight. As in (DIHL; JUNG; BINS,

2011; FÜHR; JUNG, 2012), the β parameter is defined adaptively as the minimum value of the

distances si at each time step.

It is important to point out that the displacement vectorDNp+1 does not originate from

patch matching, but instead it is computed using motion prediction. Hence, the vector does not

have a matching error. To include it in the WVMF formulation, its matching error bNp+1 is set

artificially to the median value of the best matching distances extracted in the last Tp frames.

In this manner, the predicted vector always has a strong importance in the WVMF such that,

when the weights of the patches decrease, the prediction automatically gains importance in the

computation of the filtered vector, which is useful particularly in occlusions. This scheme is

similar to the one proposed by Dihl et al. (DIHL; JUNG; BINS, 2011). However, preliminary

results indicated that the predictions tend to be corrupted during longerterm occlusions. In

fact, the performance of the tracker is actually reduced rather than improved when using these

predictions because the algorithm implicitly trusts a prediction that is corrupted. To avoid this

problem, our system only updates the current prediction of a target if the median matching error

of the patches is not considered an outlier with respect to past frames (we use the same statistical

approach presented in Section 3.2.7 to determine this). However, if this error is detected as an

outlier, we assume that the tracker has performed poorly (possibly due to an occlusion) and the

last computed prediction is kept in order to not corrupt the displacement estimate.

After applying the WVMF, the displaced points in the WCS are projected back onto

image using the heights Li of the patches; these projections correspond to the new patch centers

in the image. This is done because, as mentioned before, even if the points have the same X

and Y coordinate in the world, their projections do not necessarily constitute a line in the image

plane vertical orientation. The effect of moving patches in this manner is that their centers will

always correspond, in the world, to a 3D line that is perpendicular to the ground plane. Therefore,

the tracker automatically adjusts the orientation among the patches at each time step in a way

that is coherent to what is observed in the image. Finally, the position of the pedestrian at time

t + 1 is given by X(t + 1) = X(t) +Df , where Df is the result of the WVMF according to
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Equation (3.18).

3.2.5 Refining the tracks with detection results

A pedestrian detection scheme (DOLLÁR; BELONGIE; PERONA, 2010) is used in the

proposed approach to initialize the tracks. However, the information provided by the detector can

also be explored in the tracking framework, since it provides additional indications on where each

person is located. In this work, the output of the pedestrian detector is used as an additional cue

to find the motion of each target, along with the displacement vectors provided by the multiple

patches and the predicted motion vector. For that, the set of the pedestrian detections is analyzed

at each frame both for initialization purposes and also to create additional vectors to be included

in the WVMF, which we refer as “detection vectors”. This is done using a simple yet efficient

association procedure as follows.

Again, letX(t) denote the ground plane position (in the WCS) of a given pedestrian at

frame t, and let ud1, ud2, ..., udK denote the lower middle point of the bounding box (in image

coordinates) of the K detected pedestrians at frame t + 1. As before, we use Equation (3.10)

to find the ground plane positionsXd
1 ,Xd

2 , ...,Xd
K of the detected pedestrians (for the sake of

simplicity, let us assume that xdi are defined in ascending order with respect to the distance from

x(t)). Then, a circular search region centered at X(t) with radius rd is created, and Kd ≤ K

detection results are considered possible matches if ‖X(t)−Xd
i ‖ ≤ rd.

If only one detection is within the search region (i.e. Kd = 1), the associated ground

point is used to create a WCS displacement vector DNp+2 = Xd
i −X(t), which is included

in the WVMF formulation of Eq. (3.18) with the same matching error as the predicted motion

(i.e. using N = Np + 2 and bNp+2 = bNp+1). If Kd > 1, more than one detection result could

be associated to the target. In this case, the WVMF is initially computed without any detection

vector, generating an initial filtered displacement vectorDf . From all candidate displacement

vectors xdi −x(t), i = 1, ..., Kd, we select the closest one toDf (in terms of Euclidean distance),

and recompute the WVMF including this detection vector.

As we are going to show in the experiments section, this additional cue greatly improves

results by allowing the tracker to recover from failure after an occlusion and also by preventing

bad initialized targets to diverge to the scene background.
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3.2.6 Scale estimation

The calibration can also be used to compute the target scale in the image. Several tracking

algorithms such as (ADAM; RIVLIN; SHIMSHONI, 2006; BERTINETTO et al., 2016) create a

large number of candidates at different scales in order to select both the position and the scale at

the current frame. However, this is not needed in a calibrated scenario (or at least the number

of scales can be greatly reduced using the geometry information provided by the calibration).

As shown in (FÜHR; JUNG, 2014), if the scale is correctly estimated at initialization, one can

compute the target’s height at initialization and kept this value throughout the sequence.

When the target is initialized, the height of the target (in the WCS) can be obtained by

solving for Li in Eq. (3.13), using only the vertical component of the bounding box. Since this

height is fixed for a given pedestrian, the feet location of the target is displaced, and the head

location in the ICS is computed using the camera projection equation with the height stored at

initialization. The patches can also change size in the image due to scale modifications but since

we computed the height of the target in the image we simply need to resize the patches according

to their new image heights and original aspect ratios – similar to the patch creation procedure.

As a consequence, the scale of the target is automatically adjusted during the tracking process.

3.2.7 Track termination

When developing a multi-pedestrian tracker, an important step is to determine when a

track is no longer valid. This may happen when the person leaves the viewing area of the camera,

or when the tracker gets lost. Although the first case may be tackled by evaluating specific

entry-exit zones (such as the borders of the image), it is not trivial to determine if a system is

tracking a subject correctly.

The proposed termination procedure is based solely on a quality measure of the tracker:

if the tracking of a specific target has generate low matching accuracies for a sufficiently long

period of time (Tn frames), the track is terminated. This procedure works either when the person

leaves the viewing area of the camera or when the tracker is actually lost.

More precisely, for each pedestrian, the median matching error of the patches is stored at

each frame. Then, a statistical strategy for outlier detection (HAN; KAMBER, 2001) is used

to detect if the tracker got lost. Initially, the most recent Tn error values in a target history are

removed from the history to create a set called Slast. The set of all the errors except for the last Tn

values is called Shist. To test if the elements in Slast are outliers with respect to the values in Shist,
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the third quartile of Shist, denoted by Q3, is extracted along with the interquartile range, IQR.

Then, the tracker is considered lost if all the values in Slast are larger than Q3 + 1.5IQR (HAN;

KAMBER, 2001). In our experiments we used two values of Tn depending on the current

position of the target on the image and the sequence frame-rate Fr. If the target is placed on the

image borders we used Tn = kbFr, whereas the value Tn = krFr was used for the remainder of

the image. We use kb < kr to produce a temporal window Tn that is smaller on the boundary

zone because it is assumed that these are usually the exit zones of pedestrians. In the middle of

the image, Tn is larger to allow the tracker to recover from failure, which can be induced by an

occlusion, for instance.

When the color features used for patch matching are not very discriminative (e.g. colors

of a pedestrian similar to the background), an erroneous track that should be terminated may not

be detected by the outlier detection rule. To handle such cases, we additionally terminate a track

if no result of the pedestrian detector was found within the patch search region in the last kdFr

frames.

3.3 Collective behavior recognition

Automatic or semi-automatic analysis of human behavior have been studied by the

computer vision community for several years. In particular, there has been increasing interest

in inferring semantic information about the relation and interaction among people in a video

sequence. In this dissertation, we propose a hierarchical approach for collective behavior

detection solely based on the peoples trajectories in the ground plane. In the first level, pairwise

interactions between agents are extracted based on the expected distances among people and

the dynamics of the relative distance between the pair. Then, additional information such as the

group speed and shape are fused with the pairwise interactions using Random Forests to detect

higher level collective behavior. Thus, we aim to tackle two goals at the same time. On a global

scale, we are trying to detect events that are occurring in the scene involving an arbitrary (and

possibly variable) number of people. Additionally, we are also attempting to identify which

subjects are involved in this collective activity, as well as their role in it. For instance, we want

to recognize which subjects are following others in a chasing activity. This information can help

surveillance systems to automatically associate levels of importance for each person in the scene

and detect mischievous behavior. These pairwise interactions, in addition to being relevant by

themselves, also contribute to the collective recognition layer. In order to propose a method

capable of adapting to different scenarios and events, we investigate a set of features that are
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able to describe a wide range of different behaviors. Yet, in order to motivate our choices, we

present our reasoning on a defined ensemble of interactions and behaviors for better illustration,

as it is discussed later.

Throughout the remaining of this work, it is important to notice that we assume the

pedestrians ground plane positions in the sequence to be given, and they are the only input to the

method. As stated before, we chose to use world coordinates instead of image coordinates since

they generalize much better across different scenarios, being independent of the camera setup

used to acquire the sequence. Also, given our self-calibration method described in Section 3.1,

we do not feel that this is a prohibitive constraint. In fact, some of the experiments described in

Section 4.3 were performed using our own self-calibration method to automatically extract the

planar homography and to convert annotated bounding boxes to ground plane coordinates.

A schematic overview of the method is illustrated in Figure 3.10, and details of each

layer in our hierarchical classifier are provided next.

Figure 3.10 – Overview of the proposed method: the trajectories of a pair are described using a number
of spatial cells and the derivatives of their relative distance. This is fed to a Random Forest that classifies
the interaction among six possible answers. The time-accumulated interactions together with features
of shape analysis and speed profiling are given to a second Random Forest, which finally classifies the
collective activity observed in the sequence.
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3.3.1 Pairwise interactions

Let an interaction between two pedestrians o1 and o2 be denoted as o1 → o2, where o1

is the anchor subject, and o2 is the target subject. It is important to notice that, unlike some

works that define symmetric interactions (e.g. (CHOI; SAVARESE, 2014)), in our work o1 → o2

is different from o2 → o1. By choosing asymmetric interactions, it is possible to identify the

role of each person in the observed group/pair activity. For example, in a chasing event we can

determine the chaser(s) and the chasee(s) individually.

Before we present our pairwise interaction descriptor, we must define the types of

interactions we aim to detect in our videos. They should be interesting enough to provide useful

information about the scene by themselves, but also adequate as input cues for detecting higher

level collective behavior. We defined six different pairwise interactions: being-followed (BF),

following (F), walking-together (WT), standing pair (SP), splitting (S), and approaching (Ap).

These interactions were basically the same used in (CHOI; SHAHID; SAVARESE, 2009), but the

“follow” behavior was split into following and being-followed here, recalling that our interactions

are not symmetric in general, opposed to other methods (CHOI; SHAHID; SAVARESE, 2009;

CHOI; SAVARESE, 2012).

The first cue that is important for identifying pairwise interactions is the set of relative

positions between two subjects within a time window, which can be explored to detect if they

are near/far each other, side by side and so on. In this work, we divide the region around a

subject into cells using boundaries in the polar domain (both distances and angles) w.r.t. the

anchor subject. One descriptor is created for each one of the neighboring subjects, i.e., we

define a pairwise descriptor. More precisely, the distances boundaries in our Personal Interaction

Descriptors (PIDs) were obtained according to the studies of Hall (HALL, 1973), which sets

different radii for the expected intimate, personal, social and public interactions between two

subjects, illustrated at Table 3.1.

Table 3.1 – Distances thresholds for different levels of interactions as proposed by (HALL, 1973) and
used in this work to build pairwise interaction descriptors.

Level of interaction Approximated distance
Intimate up to 0.5 meters
Personal 0.5 to 1.25 meters
Social 1.25 to 3.5 meters
Public more than 3.5 meters

In fact, the concept of proxemics was already used in the context of group detection
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in some methods, such as (JR et al., 2007; SOLERA; CALDERARA; CUCCHIARA, 2015).

Additionally, we divide the region into four equidistant angular sectors to identify back, front

left and right sides of the anchor subject. The cell disposition around the anchor is illustrated in

Figure 3.11(a), and the cells are aligned (rotated) assuming that the anchor subject is moving

horizontally to the right.

It is worth noticing that the spatial distribution of the neighboring pedestrians was also

explored in (CHOI; SHAHID; SAVARESE, 2009; CHOI; SAVARESE, 2014). However, they

used a classifier to obtain the orientation of each agent, which is based on image features and

might be sensitive to the camera setup, and that leads to a higher-dimensional representation.

Instead of using image features, we estimate the local orientation of a moving pedestrian based on

the corresponding trajectory, filtered by a Double Exponential Smoothing technique (LAVIOLA,

2003) (as used for tracking) to reduce the effect of trajectory jitter. However, one limitation of

the proposed method is that it fails for stationary pedestrians, or for slowly moving ones (for

which the orientation estimation is very noisy). In fact, when the speed of the anchor subject

is smaller than a threshold Ts, we disregard the orientation part of the proposed descriptor by

setting a random orientation value for the target pedestrian, so that there is no bias to a particular

orientation (and information is encoded by the distance only).

Figure 3.11 – (a) Four angles and three distances are used to divide the region around a subject into
bins/cells. (b) A normal distribution is used to introduce a soft boundary between cells.

Intimate 

Personal 

Social

STL - One subject against 
all others

OCD v1 - Pair-wise relations OCD v2 - Pair-wise relations 
with reduced cells

Anchor subject t1

Target subject t2

(a) (b)

Source: Author

We then compute a histogram of relative positions between the targets within a temporal

window using the spatial bins illustrated in Figure 3.11(a). More precisely, for a given frame ft

at time t, we analyze a temporal window with T1 frames (assumed to be a power of two) centered

at t, i.e. from ft−T1/2+1 to ft+T1/2. A traditional histogram could be obtained by simply counting

the number of relative positions that lie in each bin along all frames in the window. However, this
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approach is very sensitive to samples that lie close to the boundaries between bins, so that similar

pairwise behaviors may generate considerably different histograms. This problem is amplified

when the number of samples is small, as it is often the case on human behavior classification.

A known method for improving the estimate of the underlying probability density function

(PDF) from a histogram is kernel density estimation (KDE) (HWANG; LAY; LIPPMAN, 1994),

in which a kernel centered at each observation is used to obtain a continuous PDF of the data. In

this work, we use a Gaussian kernel defined in polar coordinates (ρ, θ) given by (disregarding

normalization):

GKDE(ρ, θ; ρo, θo) = exp

[
−(ρ− ρo)2

2σρ
− dθ(θ, θo)

2

2σθ

]
, (3.20)

where ρo and θo are the polar coordinates of the target subject relative to the anchor (i.e. the

location of the sample),

dθ = min{|θ − θo|, 2π − |θ − θo|} (3.21)

is a function that computes the smallest difference between two angles and σρ, σθ are the scale

parameters in the distance and orientation domains, respectively.

To obtain the histogram, one could just integrate the kernel-smoothed PDF over each bin.

In this work, such integral is approximated by sampling a constant number of points around its

center (ρo, θo) equally spaced in a Ksσρ ×Ksσθ grid, normalizing and then summing over each

spatial bin, where Ks controls the extent of the sampling region. If hot(c) denotes5 the histogram

for target o at time t at cell c, it is given by

hot(c) =

t+
T1
2∑

τ=t−T1
2
+1

ag(τ)
∑
s∈Soτ

χc(s)GKDE(s;pot), (3.22)

where

χc(x) =

1 if x ∈ Ac,

0 otherwise.

is the indicator function for bin c (Ac is the spatial region that defines c), Sot is the set of samples

from the grid generated by the target ot, pot is the vector containing the polar coordinates of

ot, and ag(t) is a normalization factor for the samples generated at frame t such that the final

histogram sum is equal to one. We show in the experiments (Section 4.3) that the use of the KDE

smoothing can improve the discrimination quality of our descriptor significantly.

5For the following expressions in this section, let the target subject o2 at time t be expressed as ot.
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The process for obtaining the KDE-smoothed histograms is illustrated in Figure 3.11(b).

More precisely, the heat map shows the PDF induced by the proposed kernel for the target agent

in Figure 3.11(a).

The second cue in the proposed PID is the dynamic aspect of a pair trajectory. The

KDE-smoothed histogram encodes the cumulative relative position of the target agent w.r.t.

the anchor, but temporal information is lost. For instance, in the approaching and splitting

interactions, the distances decrease and increase, respectively, in a reasonably-sized temporal

window. However, such information is lost when computing the histogram: these two different

interactions could lead to the exactly same histogram.

In order to include this information in the PID, we compute the relative speed d′(t),

where d(t) is the relative distance between the pedestrians under analysis. We evaluate d′(t)

within the temporal window in a pyramidal fashion, and append these values to the PID. At the

first level of the pyramid, we take the mean of the derivatives for the whole temporal window.

Next, we evaluate the averages at the first and second half, generating two values and so on.

More precisely, for each level l ∈ {0, 1, . . . , lmax}, where lmax is the highest level, we build a

2l-dimensional feature vector

d′l(t) = (µl1(t), · · · , µl2l(t))T , (3.23)

where

µlk(t) =
2l

T1

T1
2l
k−1∑

τ=
T1
2l

(k−1)

d′
(
t+ τ − T1

2
+ 1

)
(3.24)

is the average of d′(t) in the kth partition interval at level l. Finally, a consolidated vector d′(t) is

obtained by concatenating d′l(t) for l = 0, ..., lmax, and it encodes hierarchical information on the

relative speed for the pair of pedestrians within the analyzed time window. The dimensionality of

d′(t) is 2lmax+1 − 1, which is much smaller than using different intervals to compute the spatial

histograms, as proposed in (CHOI; SHAHID; SAVARESE, 2009).

Figure 3.12(a) shows the relative distances of two pedestrians computed in a temporal

window placed between an approaching and a standing-pair interaction. The corresponding

derivative and the multiscale derivative averages (only two levels) are shown in Figure 3.12(b).

As it can be observed, the averages in the two halves of the time interval indicate different

behaviors, which could not be captured using the average along the whole interval. In fact, using

only a single average value would be prone to noise and would not be discriminative for detecting

the transitions between interactions. Also, our aim was to encode this type of information using
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Figure 3.12 – The dynamics of the relative distance between a pair (a) is encoded in the multiscale
derivative averages (b)
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a small amount of data, since it is known that classification methods often suffer from the “curse

of dimensionality” (HUGHES, 1968), i.e., higher-dimensional feature vectors tend to require

larger training datasets.

3.3.2 Collective behavior descriptor and classification

The final goal of our method is to use all the detected pairwise interactions and to classify

the collective activity of a given group. Our main hypothesis is that there are different cues of

information that are required to describe an interaction or activity. For that reason, our collective

descriptor also uses Random Forests to mix different kinds of information. Once more, we extract

data in a given temporal window of T2 (also a power of two) frames and assume that a single

activity appears in the scene (as in (CHOI; SAVARESE, 2014; AMER; LEI; TODOROVIC,

2014)), and eventual additional trajectories are rejected. Despite the fact that our collective
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method provides a general approach for inferring group activities, in this dissertation we chose

to study a subset of them that commonly appear in surveillance systems and represent a good

sample of the activities seen in real world applications: Gathering, Talking, Dismissal, Walking,

Chasing and Queuing. These interactions were also tackled in (CHOI; SAVARESE, 2012), which

also allows comparisons with other methods.

Different types of pairwise interactions are expected to arise in a single collective activity.

For instance, let us consider the queuing event. People waiting in line are related trough a

standing-pair interaction and, if a person is directing him/herself to the line, an approaching

interaction is observed. Even more, if two or more people are advancing significantly in that line,

our definition would indicate that there are following and being-followed interactions appearing.

In order to describe the multitude of these interactions, our Collective Behavior Descriptor

(CBD) starts by building a histogram of the pairwise interactions detected by our first classifier

within the temporal window. This histogram is normalized to account for variation in the number

of people that compose the group, such as its sum is always equal to one. Since we defined six

interactions in Section 3.3.1, this histogram represents the first six dimensions in our descriptor.

However, only using pairwise interactions is not enough to differentiate all the classes of

collective behavior that we are interested on, since some collective behaviors may present the

same distribution of pairwise interactions (e.g. both Walking vs Chasing could involve following,

being-followed and walking-together). To overcome this limitation, we add new features related

to the speed and spatial distribution of the observed pedestrians. The first feature is the mean

speed vµ(t) of the group averaged inside the temporal window:

vµ(t) =
1

T2

t+
T2
2∑

τ=t−T2
2
+1

1

#Sτ

∑
s∈Sτ

‖vsτ‖, (3.25)

where Sτ is the set of subjects in the group at time τ and vsτ is the velocity vector of pedestrian

s at frame τ . The velocity cue is necessary to reduce the confusion between behaviors such as

chasing, talking and walking groups, whose speed profiles are clearly distinct from each other.

Another relevant source of information is the spatial distribution of the pedestrians along

the group, and how it changes in time. For instance, in behaviors such as gathering and dismissal,

the group goes from disperse to compact and from compact to disperse, respectively. To encode

the temporal variation of the group shape, we first define the group dispersion δ(t) at frame t as

δ(t) =

√
1

#St

∑
s∈St

‖pst − µt‖2, (3.26)
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where pst is the position of a subject s and µt is centroid of the group at frame t. Finally, the

temporal dispersion change s(t) is given by

s(t) =
1

T2

t+
T2
2∑

τ=t−T2
2
+1

δ′(τ), (3.27)

i.e. it is the average of the derivatives along the temporal window. In a gathering behavior, s(t)

is expected to be negative, where the opposite should happen in a dismissal behavior. For both

s(t) and vµ(t), we also experimented with the same pyramidal averaging approach described in

Section 3.3.1, yet the overall classification performance remained almost constant. Therefore,

we decided to use just the temporal average (first level of the pyramid) to keep the descriptor

compact.

Given the framework described so far, there are two types of behavior commonly observed

in surveillance scenarios for which the system would still have trouble differentiating: queuing

and talking6. The reason is that the interactions observed will be mainly standing-pair and

the dynamics of both activities are nearly identical, i.e. the related subjects stand still, so

that vµ(t) ≈ 0 and s(t) ≈ 0. Instead of relying on image cues to obtain the orientation of

the pedestrians, we use a feature that allows to distinguish a line (queueing) from a disperse

distribution of people. In fact, this descriptor is given by

p(t) =


λmax/λmin if #Sg > 1 and λmin > 0,

0 otherwise,
(3.28)

where λmin ≤ λmax are the two non-negative eigenvalues of the covariance matrix of a set of

2D points that represent the subjects ground plane positions at time t. It is worth remembering

that we employed a similar idea to compute the quality of a pedestrian foreground mask for

self-calibration in Section 3.1. Once again, we compute p(t) at the center of our temporal window

and append it to the descriptor, which is fed to the second random forest. Figure 3.13 shows

two different values of p(t) for the end of a Gathering and Queuing event – clearly, the values

of function p are able to differentiate the disposition of ground plane positions in the example.

We show in our experiments that this single value can make a vital difference in classification

accuracy.

6To clarify, the talking behavior in this dissertation corresponds to a group of still people standing together.
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Figure 3.13 – The value of p(t) for two different activities.
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4 EXPERIMENTAL RESULTS

In this chapter, we describe the experiments carried out for self-calibration (and its

proposed applications), multiple-object tracking and collective behavior. For self-calibration

and tracking, we chose two well know datasets that are publicly available: the PETS 2009

dataset (FERRYMAN; ELLIS, 2010)1 (sequence S2.L1 and View-001) with 768×576 images

and the TownCentre (TC) dataset (BENFOLD; REID, 2011)2 that is composed of 1920×1080

full-HD images. Both sequences are monocular and contain several people, also providing the

ground truth for pedestrian tracking/detection as well as calibration matrices. To further test

our geometry-aware pedestrian detector described in Section 3.2.5, we also created a small

dataset consisting of a video sequence take from an on-board camera (iPhone 5S smartphone)

mounted on the dashboard of a vehicle passing by an urban area. This dataset contains 2013

high-resolution frames (1080p), and a total of 1498 pedestrians annotations (bounding boxes).

The sequence, together with its ground truth annotation, is available publicly for future references

and benchmarks3.

For collective behavior we used the dataset provided by Choi et al (CHOI; SAVARESE,

2012)4, which contains people locations, interactions and group activities annotated for a total of

33 sequences captured in the same camera setup. Since our recognition method requires ground

plane trajectories, we calibrated the camera using our self-calibration method described in this

dissertation – the quality of calibration was inspected visually. Please notice that we revised the

interaction annotations included in the dataset, since our set of interactions differ a little with

respect to the work of Choi and colleagues (see Section 3.3.2 for details). For collective behavior

recognition we used annotated bounding boxes to evaluate our method using the same protocol

as other state-of-the-art methods (CHOI; SAVARESE, 2012; AMER; LEI; TODOROVIC, 2014).

To test the ability of our method to generalize between different camera setups we also used the

BEHAVE dataset (BLUNSDEN; FISHER, 2010) for testing5. Figure 4.1 shows sample frames

of the five datasets used in the experimental analysis.

1PETS dataset is made available at <http://www.cvg.reading.ac.uk/PETS2009/a.html>
2TownCentre dataset is available at <http://www.robots.ox.ac.uk/~lav/Research/Projects/2009bbenfold_

headpose/project.html>
3The car dataset can be obtained at <https://github.com/gustavofuhr/car_pedestrian_dataset>
4Available at <http://www-personal.umich.edu/~wgchoi/eccv12/wongun_eccv12.html>
5<http://groups.inf.ed.ac.uk/vision/BEHAVEDATA/INTERACTIONS/>

http://www.cvg.reading.ac.uk/PETS2009/a.html
http://www.robots.ox.ac.uk/~lav/Research/Projects/2009bbenfold_headpose/project.html
http://www.robots.ox.ac.uk/~lav/Research/Projects/2009bbenfold_headpose/project.html
https://github.com/gustavofuhr/car_pedestrian_dataset
http://www-personal.umich.edu/~wgchoi/eccv12/wongun_eccv12.html
http://groups.inf.ed.ac.uk/vision/BEHAVEDATA/INTERACTIONS/
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Figure 4.1 – The five different datasets used in the experiments of this dissertation.

(a) PETS (b) TownCentre

(c) Car (d) Choi (e) BEHAVE

Source: Author

4.1 Experiments on self-calibration and geometric-aware detection

The experiments described in this section aim to test our self-calibration scheme in

addition with the application of pedestrian detection. Since we propose a whole new method for

tracking, the experiments of tracking are described separately (Section 4.2). Notice, however,

that we use our self-calibration method in the tracking experiments and to calibrate the Choi

dataset used for collective behavior. For the majority of the experiments, three camera calibration

results were compared: the ground truth camera parameters, the projection matrix used for

initialization (see Section 3.1.2) and the final projection matrix after the non-linear optimization

(Section 3.1.3) – these last two are identified in the plots as “sf:initial matrix” and “sf:non-linear

optimization”, respectively. Additionally, some experiments show comparisons with the method

proposed by Lv et al. (LV; ZHAO; NEVATIA, 2002b), which inspired our initial calibration

scheme.

To extract the poles as required by our approach, 230 frames were used for the PETS

dataset and 1000 frames for the TownCentre dataset (with a step of 5 frames). This is around

40 seconds of video for both datasets, which is a very reasonable initialization window for

surveillance systems. The number of poles extracted was for 376 and 252 for the PETS and the

TownCentre datasets, respectively. The minimum foreground ratio was set to ta = 0.2, which

was able to reject false positives without relaying too much on the background segmentation
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(which could be noise). We chose qs = 0.11, also empirically, for which we observed that

effectively removed poorly segmented pedestrians. Furthermore, we evaluate in the next section

the impact of reducing the number of poles as input to our method.

Once the poles are extracted, the initial calibration takes about one minute to estimate the

initial projection matrix. To create vanishing points we set the minimum distances between two

poles, dp = 20 and the parameters of the RANSAC were set such as a point is considered an

inlier if its distance to the line is less than 75 pixels and the maximum number of interactions

is set to 100. Finally, we take the average height a person to be Zavg = 1.65m. The non-

linear optimization also converges at around one minute. For the applications described in this

dissertation, they all require a low error in computing the world height of a person, therefore we

favor angular coherence and found experimentally that α = 0.999 is a good choice for the cost

function (3.2). The threshold for removing duplicate poles was set to tsp = 5cm and sampling

square size was set to 2m. The whole self-calibration procedure was implemented in MATLAB

and tested in a 2.4 GHz Intel Core i7 processor with 8GB of RAM. For the optimization, we

experimented with two different solvers: the Simplex method (LAGARIAS et al., 1998) and

the Levenberg-Marquardt-Fletcher algorithm (FLETCHER, 1971). For the latter, we used an

L2 norm for the cost function given by Eq. (3.4), and both of them converged at roughly the

same time. Both solvers have random aspects in their algorithms, so the optimization was run

5 times and the solution with the lowest cost function was kept. In addition, we observed by

visual inspection that the Simplex method gives a slight better result and therefore the following

experiments made use of the projection matrix provided by this method.

4.1.1 Self-calibration error

The evaluation of a calibration matrix is not as straightforward as it may seem. One

could evaluate the error of the parameters themselves (e.g. comparison of individual intrinsic

and extrinsic parameters extracted from the projection matrices), but a global quality index based

on these individual parameters is difficult to obtain. In this work, we choose to evaluate the

calibration by computing the error in the projection, particularly related to vertical poles. The

details of this metric are as follows.

First, we extract the central point in the image (assuming that typically the camera is

focused at the most relevant portion of the scene) and, using the ground-truth homography,

the corresponding point on the ground plane in the WCS is computed. Then, we randomly

sample points around this ground plane central point using a Gaussian distribution with standard
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deviation equal to 3 meters (set empirically), and create vertical poles at random heights. Once

again, we use a Gaussian distribution for the pole heights, this time centered at 1.6 meters and

with a standard deviation of 30 centimeters (trying to emulate pedestrians). The error metric is

then defined as the mean error of the re-projected poles using the ground truth calibration matrix

and the estimated calibration matrix, using Eq. (3.2). Since the poles are created at random, we

repeat this process 10 times and report the average here.

For the experiments regarding the self-calibration error, three methods were compared: i)

the projection matrix used for initialization; ii) the final projection matrix after the non-linear

optimization; and iii) the calibration technique proposed by Lv et al. (LV; ZHAO; NEVATIA,

2002b). Since (LV; ZHAO; NEVATIA, 2002b) is designed to work for scenarios containing a

single pedestrian, we selected 10 random pedestrians (in each scenario) to generate 10 calibration

matrices, and then extract the best and median errors.

The comparison of the evaluated camera calibration methods is shown in Figure 4.2, and

our full calibration procedure presented the best results in both datasets. It is also interesting to

note that our initial calibration scheme is better than the median errors of (LV; ZHAO; NEVATIA,

2002b), although the execution of (LV; ZHAO; NEVATIA, 2002b) for the best single pedestrian

presented lower errors than our initial calibration for PETS. In fact, this result was expected:

Lv et al.’s approach is designed for controlled conditions, such as a single pedestrian walking,

covering the majority of the scene in its path and without many occlusions occurring, as for some

of the pedestrians in the PETS sequence. For the TC sequence, however, people walk mostly

along straight lines – i.e. they do not wander around the scene, and even the result with the best

pedestrian is poor. Another consideration about (LV; ZHAO; NEVATIA, 2002b) is that they

choose the frames in which the poles are extracted by using the detection of gait cycles. This is

not robust for the majority of subjects tested due to a number of reasons: when the subject is

occluded or stops for a significant number of frames, if the background segmentation is not very

clean or if the orientation w.r.t. the camera is not at a good angle to see the legs crossing, such as

when the person is walking toward the camera.

We also evaluated the impact of the number of poles used as input for our method. To

accomplish that, we randomly sampled increasing percentages of the whole set of poles. We then

measured the average calibration error and its standard deviation for 50 runs at each percentage

value. The results are depicted in Figure 4.3.

These results indicate that although the error and standard deviation present a tendency

to decrease when a large set of poles is used, it is still possible to achieve good results when a

small number of poles is provided to the method. Indeed, we observed in our experiments that it
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Figure 4.2 – Calibration error of the Lv et al (LV; ZHAO; NEVATIA, 2002b) (best subject and median
error) and the two stages of our method. The error is derived from Eq. (3.4) applied to multiple poles
using the projection matrix. See text for more details.
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Figure 4.3 – Calibration error for different percentages of the initial set of poles.
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is more important to have poles that are well spread in the scenario than to have a large number

of them concentrated in a small region of the scene.
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4.1.2 Geometry-aware pedestrian detection

To test the improvement for pedestrian detection, we created a modified version6 of

the method proposed by Dollár and colleagues (DOLLÁR; BELONGIE; PERONA, 2010) to

reduce the number of candidates by only creating geometrically coherent ones, as described in

Section 3.1.4.1. We create candidates by analyzing the ground plane image pixels with stride

equal to 10 and set 5 uniformly spaced heights, with k = 2 for Eq. (3.7). We also implemented

a modification to the traditional pedestrian detector based on HOG+SVM (DALAL; TRIGGS,

2005) as well. This implementation uses the OpenCV standard models and the source code was

made available7. The following results for this modification were made with a pyramid of images

of 10 levels using a reduction of 5% at each level and 3 uniformly spaced heights, with stride

equal to 10.

We show results, as described in (DOLLAR et al., 2012), using the number of false

positives per image (FPPI) against the miss rate (1−recall) with log-log scaled axes. As described

in (DOLLAR et al., 2012), a good comparison point tends to be around fppi = 1, which can

be acceptable for many applications. The curves for all the frames in the PETS dataset and 500

frames of the TownCentre dataset, obtaining by varying the acceptance threshold of the detections,

are illustrated in Figures 4.4 and 4.5, respectively. The results show that using calibration to

generate candidates decreases the miss rate at several values of fppi for both baseline pedestrian

detectors, particularly for the PETS dataset. It is also clear that the optimization phase of our self-

calibration method is important for our proposed modifications on detectors, since results from

sf:non-linear-calibration are indeed better than sf:initial calibration. This is more noticeable in

the TownCentre dataset, where the initial estimate of calibration show a larger inconsistency in

the Z-axis.

In addition to these two datasets, we test the pedestrian detection scheme for mounted

vehicle cameras using the aforementioned Car dataset. For this dataset (suited for Driver

Assistance Systems), a different calibration method was used (PAULA; JUNG; SILVEIRA,

2014), since the camera is not static and background removal is unfeasible. Once again, we

applied our modified detector based on the HOG+SVM and Dollár detectors – the results are

shown in Figure 4.6. The results indicate that our approach of applying geometric information

in the detector’s pipeline indeed increases the overall accuracy of the system. The main reason

behind this improvement is that the generation of candidates is more coherent with the pedestrians

6This project (written in C++), it is open source and can be obtained at <https://github.com/gustavofuhr/opencv_
dollar_detector>

7 <https://github.com/gustavofuhr/pedestrian_detector_calibrated>.

https://github.com/gustavofuhr/opencv_dollar_detector
https://github.com/gustavofuhr/opencv_dollar_detector
https://github.com/gustavofuhr/pedestrian_detector_calibrated
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Figure 4.4 – FPPI vs. missrate for PETS dataset.
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Figure 4.5 – FPPI vs. missrate for TownCentre dataset.
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appearing in the scene, and detection results with implausible pedestrian heights are avoided. An

example of comparison between the baseline detector and the proposed approach is shown in

Fig. 4.7. As it can be observed, the two baseline methods evaluate in the experiments produce

detections (marked with arrows) that are clearly incompatible with the dimensions of real

pedestrians. On our approach, such candidates would either have a very small score (due to the

Gaussian weight based on pedestrian height estimates) or would not even be tested, since their

heights are clearly much larger than a expected person at that position.

We also evaluate the number of candidates and running time of the tested pedestrian

detectors with and without calibration. Table 4.1 shows the number of candidate bounding

boxes used for both baseline methods – Dollár and HOG+SVM – and our modifications to these

methods, as well as the execution times (computation of the feature pyramid and total detection

times). As it can be observed, we generate a much smaller number of candidates than the baseline

method at comparable execution speeds for the Dollár modification and lower execution times

for the HOG+SVM baseline method (speed-up factors between 2.5 and 4.1, depending on the
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Figure 4.6 – FPPI vs. missrate for Car dataset.
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dataset). We believe that the running time did not improve in the case of Dollár because the

implementation by the author computes (in a very efficient way) the pyramid of features before

the creation of candidate bounding boxes. The time to compute the feature pyramid depends

on the minimum and maximum scales: for the baseline detector, we used the default values

provided by their implementation8, and for our method we used the adaptive values described in

Section 3.1.4.1.

Table 4.1 – Number of candidates and times comparison for our modifications on both detectors:
Dollár(DOLLÁR et al., 2009) and HoG+SVM(DALAL; TRIGGS, 2005).

Dollár baseline
No calibration Calibration

PETS TC Car PETS TC Car
Number of candidates (× 1k) 116 666 134 68 544 138
Feature Pyramid Comput. Time (ms) 24.2 142 207 18 133 206
Average time per frame (ms) 293 1551 242 293 1760 255

HoG+SVM baseline
No calibration Calibration

PETS TC Car PETS TC Car
Number of candidates (× 1k) 71 147 37 18 49 4.9
Average time per frame (s) 6.7 15.9 2.9 2.3 6.4 0.7
Speed-up factor 1× 1× 1× 2.9× 2.4× 4.1×

Since the number of candidates created at a frame depends on the size of the input image

and also the range of scales scanned in the baseline approach (which is usually set by the user),

we downsampled 1080p images from the Car dataset using multiple scaling factors, and the

results are shown in Figure 4.8. Since our method samples the ground plane to generate multiple

candidates and the horizon line of the video is within the image plane, such sampling could,

theoretically, go on forever. However, we make a threshold based on pixels to limit the minimum

height for the creation of candidates. In this experiment, we set the threshold to 10% of the

8The original code of Dollár’s detector is available at <http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html>

http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
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Figure 4.7 – Comparison between the baseline detector (red) and the proposed improvement (blue). Top
picture is a comparison with the HOG+SVM detector and the bottom is with Dollár’s.

w/ calibration w/o calibration

False positives

False positive

Source: Author

height from the re-scaled image. Clearly, the number of candidates generated by our method is

much inferior then a common sliding-window technique.

4.2 Pedestrian tracking

In this section we present several experimental results obtained with the proposed algo-

rithm for pedestrian tracking. First, we evaluate the method using the ground truth annotation

provided by the datasets and in Section 4.2.1 we show the results using our self-calibration
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Figure 4.8 – Number of candidates generated by the methods as a function of image downsampling
factor.
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method. For the results described in this section we set the number of patches Np = 6, the

number of binsNb = 128 for the color histograms and smax = 1.5m/s as the maximum expected

pedestrian speed with a relaxation parameter αr = 0.5. Additionally, the smoothing parameter

for motion prediction was set to α = 0.08 (see Eq. (3.14)). To combine patch displacement

vectors using WVMF we chose γ = 0.25 as proposed in (FÜHR; JUNG, 2012) and Tp = 50

frames. The circular region around a pedestrian to associate with detections was set to rd = 1m.

For termination, kb = 0.5 and kr = kd = 3.

Validation was performed qualitatively, by visual inspection of tracking results, and

also quantitatively, by computing tracking errors using ground truth data. We compared our

approach to the FragTrack9 algorithm (ADAM; RIVLIN; SHIMSHONI, 2006) and the TLD10

tracker (KALAL; MATAS; MIKOLAJCZYK, 2010). Since neither FragTrack nor TLD were

designed for multiple object tracking, we used the initializations provided by the proposed method

(variant Proposed-ALL). The termination frames for these two methods were manually specified

for the sequences by observing the last frame where the targets appear in the ground truth. For

these two methods, each subject was individually tracked and the results were combined to

calculate the objective quality metric values. We used the implementations provided by the

authors in their websites (see footnotes), and the parameters were set to the values suggested in

the corresponding papers. An exception was the size of the search window used in FragTrack,

which was set to 30× 30. In addition, we also compared our results with the method proposed

9FragTrack: <http://www.cs.technion.ac.il/~amita/fragtrack/fragtrack.htm>
10TLD: <http://info.ee.surrey.ac.uk/Personal/Z.Kalal/tld.html>

http://www.cs.technion.ac.il/~amita/fragtrack/fragtrack.htm
http://info.ee.surrey.ac.uk/Personal/Z.Kalal/tld.html
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by Pirsiavash et al. (PIRSIAVASH; RAMANAN; FOWLKES, 2011), referred as DP+NMS11. As

mentioned before, this method is non-causal (explores future information), which contrasts with

our online causal approach.

In order to verify the impact of different components of our method on the quality of

tracking results, we tested 4 variants of the proposed algorithm. The first one is a variant that

includes neither predictions nor the detection vectors; we call this implementation Proposed-

NP+ND. This version can be considered almost the same approach as (FÜHR; JUNG, 2012),

but applied to multi-target tracking, i.e. it includes only our initialization and termination steps.

The second version, called Proposed-ND, only removes the detection vectors. The third variant

(Proposed-NP) only excludes the prediction vectors in the WVMF computation. Finally, the

variant called Proposed-ALL is the implementation of all the components described in this

dissertation.

To analyze the tracking results quantitatively, we applied the MOT metrics (BERNARDIN;

STIEFELHAGEN, 2008), which evaluate the tracking performance for a given multi-target sce-

nario using two indicators: the Multiple Object Tracking Accuracy (MOTA) and the Multiple

Object Tracking Precision (MOTP). The MOTA performance is defined by equation (4.1):

MOTA = 1−
∑

t (mt + fpt +mmet)∑
t gt

, (4.1)

where mt, fpt, mmet and gt are the number of misses, false positives, mismatches and number

of objects present at time t, respectively. Therefore, an ideal tracker should present the highest

possible MOTA value of one, while lower values (that can be even negative) indicate a higher

fraction of errors. Additionally, the MOTP represents the average error of the tracks that were

considered correct (error distance below a certain threshold). Therefore, a good tracking method

must have high MOTA and small MOTP values.

In order to use the MOT metrics, both a distance function and a threshold must be

specified. Several authors use the overlap between the ground truth and the tracking result as

a distance (BREITENSTEIN et al., 2011). However, this metric tends to favor methods that

generate their outputs using detection bounding boxes, because this is usually how the ground

truth is obtained. Furthermore, the bounding box is not a good approximation of the target

when pedestrians appear oblique in the image (due to camera perspective). Instead, we use the

Euclidean distance (on the ground plane) between the tracker result and ground truth data in

the WCS. The threshold used in our experiments was 50 cm for the PETS dataset and 1 m for

the TownCentre sequence. Notice that the threshold for the TownCentre is larger because the

11DP+NMS: <http://www.ics.uci.edu/~hpirsiav/>

http://www.ics.uci.edu/~hpirsiav/
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bounding boxes in the dataset ground truth are not very well aligned with the pedestrians.

The MOT results are presented in Table 4.2. It is possible to observe that, for both

datasets, our tracking accuracy (measured by the MOTA value) is higher than all the other

methods. Due to the fact that many people appear at the same time throughout the sequence and

because there is a light post in the middle of the scene, many occlusions occur in this scenario.

We manually count them by visual inspection and identified 28 occlusions that we considered

severe and could significantly lead the trackers to failure. Additionally, we counted 16 partial

occlusions in which a large portion of target remains still visible. Of this total of 44 occlusions,

our method was able to recover a good position for 39 of them. The 5 failures were associated to

severe occlusions, and in those cases the targets were quickly identified as lost and removed by

our termination scheme.

The errors related to the two longest successfully tracked tracks are shown in Figure 4.9,

consisting of more than 500 frames for the first track and around 400 frames for the second

one. It is also possible to notice in the plot that many occlusions occur along the tracks (shaded

regions in the plot) and that, with an exception of one, the method was able to recover good

positions afterwards. For the first subject (top row), a severe occlusion around frame 730 caused

the tracker to fail. However, within a few frames, the target was terminated and another tracker

associated with the same subject was initialized.

Table 4.2 – MOTA and MOTP values of the tested methods for the two sequences involved in the
experiments. Best values are shown in bold.

Method
PETS TownCentre

Observations
MOTA (%) MOTP MOTA (%) MOTP

Fragtrack -45.22 26.03 -22.72 57.71

TLD -55.53 24.19 -34.99 59.32

DP+NMS 58.11 20.81 38.00 56.24 Offline method.

Proposed-NP+ND -30.64 22.94 -89.22 60.96 W/o prediction and detection.

Proposed-ND 5.77 22.92 -11.91 57.81 W/o detection vectors.

Proposed-NP 54.97 18.96 15.47 56.06 W/o prediction.

Proposed-ALL 59.40 20.90 45.20 51.8 With all components.

As observed in (BERNARDIN; STIEFELHAGEN, 2008), the problem of defining the

optimal distance threshold for the MOT metric given a dataset remains open. Therefore, we

have computed the metrics using different distance thresholds for the PETS dataset, as shown

in Figure 4.10. As expected, MOTA values are low for small thresholds, and increase as the

threshold is relaxed. It can also be observed that the proposed approach (full version) presents

consistently the largest MOTA values as the threshold varies. The MOTP values also increase

when the threshold becomes larger, mainly due to the fact that more tracks are considered

correct (but their errors get larger, increasing the MOTP values). Two variants of our method
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Figure 4.9 – The error curves of two subjects in the PETS dataset. Dark grey highlights correspond to
periods of severe occlusion, while light grey highlights are small occlusions.
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have shown the best (smaller) MOTP values. Not surprisingly, these versions are the ones that

include the detection vectors. Hence, as we expected, the use of a pedestrian detection algorithm

seems to help the tracker not only to recover from failure, but also to increase tracking accuracy.

Additionally, the prediction vectors seem to be useful for enforcing a principal direction to the

target based on the previous frames, removing the erratic motions that can arise from simple

patch matching.

Two implementations of the method were carried out: one in Matlab and another in C++.

The latter version, with pre-computed pedestrian detections and using an implementation of

ViBE in GPU, has shown frame-rate values ranging from 3 to 14 frames per second depending

on the number of targets that are being tracked (the average frame rate for the PETS dataset was

around 4). It is important to point out that the pedestrian detection algorithm used in this work

can be greatly accelerated to perform in real-time, as recently presented in (BENENSON et al.,

2012). Furthermore, our approach can be parallelized (using GPUs and/or multi-threads), since

each target is tracked independently. For the sake of comparison, we measured the average time

taken by FragTrack and TLD methods to process a frame while tracking a single person (for all

the PETS sequence). As before, we used the implementations provided by the authors (the TLD

11The project is open source and available at <https://github.com/gustavofuhr/multi_pedestrian_tracking>

https://github.com/gustavofuhr/multi_pedestrian_tracking
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Figure 4.10 – MOTA and MOTP values of all the tested methods for the PETS sequence, varying the
distance threshold.
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tracker is made in MATLAB and C++, while the FragTrack code is provided in C++). For the

TLD tracker, the average time was around 116 ms and for the FragTrack the value was around

496 ms. Our method only took around 28 ms in average to process each person at each frame12.

As for the DP+NMS method, the processing of the entire sequence took several hours since it

relies on a computationally expensive method for pedestrian detection.

Finally, for the sake of illustration, some example frames for the PETS sequence are

shown in Figure 4.11. It can be observed that the proposed method presents accurate tracking

results, being able to keep the same identifier of a target for hundreds of frames despite the

relative large inter-frame displacement of the PETS dataset. A video of the results (for Proposed-

ALL and PETS dataset) is available in the project website: <http://inf.ufrgs.br/~gfuhr/?file=

research/multi-people-tracking>.

4.2.1 Tracking with self-calibration

To attest the performance of tracking together with our self-calibration results, we tested

our tracker with the matrices given by the two variants: sf:initial-matrix and sf:non-linear

optimization. We compare the MOTA and MOTP results with the ground truth calibration and

added the results from the tracking-by-detection method DP+NMS (PIRSIAVASH; RAMANAN;

FOWLKES, 2011). The reader should recall that this method is non-causal and that does not

require calibration. Results are depicted in Figure 4.12.

It is possible to observe that the self-calibration was successfully integrated with the

12The computer used in these tests has an Intel Core i7 2700K 3.5GHz processor with 16GB of RAM.

http://inf.ufrgs.br/~gfuhr/?file=research/multi-people-tracking
http://inf.ufrgs.br/~gfuhr/?file=research/multi-people-tracking
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Figure 4.11 – Example frames of the PETS dataset.
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tracker. More precisely, our non-linear refinement increases significantly the performance of

the tracker in comparison with the initial projection matrix (larger MOTA and smaller MOTP,

indicating better results), being close to the ground truth calibration value. Also, the tracking

results with our full self-calibration scheme (sf:non-linear-optimization) are very close to the non-

causal DP+NMS, slightly worse for PETS and better for TownCentre. Moreover, the tracking

results for the TownCentre dataset clearly shows the vital role of the optimization step in our

framework. We believe that the reason for such results is two fold. First, the initial calibration
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Figure 4.12 – MOTA and MOTP values for the tracker proposed with different calibrations and an
additional method of the literature. See the text for discussion
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matrix for TownCentre presents significantly larger errors than the one from PETS – thus, the

optimization phase plays a larger role in the final calibration matrix. This was also observed in

the detection experiments of the Towncentre, in Section 4.1. The second aspect comes from the

tracking itself. Our tracking approach relies on the calibration and height estimate to correctly

track the targets appearing in the sequence. Therefore, if the error in orientation in the Z axis

orientation is large (as in sf:initial-matrix for TownCentre) the tracker will fail.

4.3 Collective behavior recognition

In the experiments described in this section our goal was to evaluate the accuracy of the

interaction and collective behavior classifiers. Additionally, we would like to assess which cues

of information are indeed relevant for inferring interactions and collective activities. Since we

used Random Forests for the two levels of inference (pairwise interactions and collective activity),

each feature in our descriptors is treated individually in the classification phase. For a different

classification method, such as SVMs, it would be tricky to verify the importance of each feature

dimension. For instance, if one or more values related to a given cue are added to the descriptor,

it would be difficult to see if either the distance function, the feature normalization or the

information itself is to blame for a possible decrease in classification accuracy. On the contrary,

since Random Forests classifiers take the features “as they are” and treat them independently,

there is a more direct relation between cue importance and performance, which enables us to

see clearly which components of our systems are responsible for the overall performance of the
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method.

Despite the relatively large number of papers for detecting interactions or collective

behavior, there is still no standard experimental framework for these problems. In this work, as

mentioned, we chose to use the dataset proposed in (CHOI; SAVARESE, 2012), which has been

gaining a lot of popularity in the last years. The dataset consists of 6 different collective behaviors:

Gathering, Talking, Dismissal, Walking, Chasing and Queuing. We carefully annotated all

the pairwise interactions that appear in the sequences using the six interaction described in

Section 3.3.1, making them available together with our source code. Because there is still no

standard protocol defined for experiments in collective behavior recognition, we chose to use a

LOSO (leave-one-sequence-out) cross validation approach due to the limited amount of samples.

In all experiments, we used T1 = T2 = 64, which showed a good compromise between

robustness to noise and detection lag. The first set of experiments aims to attest if our interac-

tion descriptor (PID) is indeed discriminative despite its very small size (usually less than 20

dimensions). For these experiments we use a step of 5 frames in classification/testing and we

defined our standard deviation for the PID at σθ = π/8 (so that each sector in the histogram

contains four standard deviations in the orientation) and σρ = 0.25, based on experiments. We

used Ks = 3 when generating samples for the KDE, which covers virtually all the area under the

Gaussian kernel. To define the number of levels lmax used in the speed pyramid, we computed

the accuracy for different values as shown in Figure 4.13(b). Based on this plot, we believe that

lmax = 1 presents a good compromise between descriptor size and accuracy, and this value was

chosen as the default.

Figure 4.13(a) depicts the confusion matrix of our pairwise interaction detector, with

an average per-class accuracy of 84.3% and minimum individual accuracy of 78% for both

following and being-followed. It worth noticing that following and being-Followed sometimes

are classified as walking-together, around 16% of times. This is due to noise in the estimates for

ground plane position. For example, when a group of several people is walking in two or more

rows, we annotated that the subjects in the back rows are following the ones in front of them,

even if the whole group is walking as one. When this group is far from the camera, mapping from

image to world coordinates gets more sensitive to noisy observations, and the relative positions

in our histograms can present jitter. As a consequence, there might be a mix up between front (or

back) to bins in the subject to the left or right sides. Despite the fact that the confusion matrix

(showed in Figure 4.14(a) shows a frame where is clear that one person is behind another, so the

system correctly assigns a following interaction to it. On the other hand, if the person is closer to

the other subject and in a more diagonal relative position, the systems mistakes the interaction
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Figure 4.13 – Experimental results for our interaction descriptor. (a) Confusion matrix. (b) Impact of the
number of levels in the pyramidal representation. (c) Impact of the KDE-smoothed histogram.
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for a walking-together, as observed in Figure 4.14(b).

Also, the results of Figure 4.13(b) and 4.13(c) suggest that the use of a Gaussian KDE

and pyramidal representation of the relative speed are important to increase the accuracy of

the classifier. More specifically, Figure 4.13(b) shows that the pyramid of speeds increases the

overall results by around 20% (notice that, in the plot, when lmax = −1 means that no derivatives

were included). The results shown in Figure 4.13(c) indicate that using hard boundaries in the

histogram for a reduced number of cells (#Sot = 12) leads to performance decrease of around

2.5% compared to using our approach inspired on KDE.
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Figure 4.14 – Two different frames showing a success and a fail case of our interaction estimation.
Circles represent ground plane points projected to the image.

Following

(a) Success case - Seq09, frame #80

WT

(b) Fail case - Seq08, frame #483

Source: Author

The second set of experiments evaluated the accuracy of the collective behavior recog-

nition method proposed in this dissertation, using the same LOSO cross validation scheme.

To evaluate the effect of different cues, we tested three different versions of our method using

different sets of cues, as shown in Fig. 4.15. These results show that, despite the CBD descriptor

without linear group information (Eq. (3.28)) be able to generate good overall results, the queuing

and talking classes are not well distinguished. The reason is clear, since both present the same

profile of pairwise interactions (standing-group), shape dynamics (no increase/decrease) and

velocity (near to zero).

It is also important to note that the proposed method is able to identify the role of each

pair of pedestrians involved in a given collective behavior due to the hierarchical nature of our

approach. Fig. 4.16 illustrates some frames of different detected collective behaviors, along with

the corresponding pairwise interactions. For instance, the higher-level chasing event shown in

Fig. 4.16(a) is characterized by following and walking-together pairwise lower-level events.

In order to compare our results with other methods, we also ran experiments using

the same 3-fold validation proposed by Choi et al. (CHOI; SAVARESE, 2012). Our average

accuracy in such configuration was 91%, which is better than state-of-the-art methods (CHOI;

SAVARESE, 2012) and (AMER; LEI; TODOROVIC, 2014), which report 79.2% and 87.2%,

respectively, using the same protocol. The confusion matrix of (CHOI; SAVARESE, 2012) and

ours in this 3-fold validation scheme is presented in Figure 4.17 13. It is interesting to note

that our lowest per-class accuracy was 80%, compared to 43.5% in (CHOI; SAVARESE, 2012).

13The paper of Amera et al. (AMER; LEI; TODOROVIC, 2014) does not present the confusion matrix, only the
average precision.
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Figure 4.15 – Confusion matrices for the collective behavior method, where “I” indicates the use of
interaction histograms, “V” the use of pyramidal mean velocities, “D” the spatial distribution dynamics
encoded in (3.27) and “S” the shape encoded from the eigenvalue ratios.
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Figure 4.16 – Selected frames from Choi dataset showing interactions and behavior estimates.
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Source: Author

Somewhat surprisingly, our average accuracy in the 3-fold cross validation was superior to the

leave-one-sequence-out protocol used so far. We believe that the main reason behind this is that
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each fold proposed by Choi (CHOI; SAVARESE, 2012) is very well balanced.

Figure 4.17 – Confusion matrices of (CHOI; SAVARESE, 2012) and our proposed method under the
3-fold validation scheme.
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Despite the very good overall and per-class performance, the system is inherently unable

to differentiate activities that depend on the subject orientation at static positions and present the

same group shape. An example of this is the inability to distinguish events of “waiting to cross a

street” and “queuing”. However, we believe that being able to generalize to any camera setup

is far a better choice for surveillance systems than to use an image-based classifier for subject

orientation, which might be crucial to detect just a few specific events.

To investigate the potential of our method in generalizing across different scenarios (and

more importantly, different camera setups), we carried out a set of experiments on the BEHAVE

dataset (BLUNSDEN; FISHER, 2010). The first 7 sequences of the first set were used, given a

total of around 63k frames. The dataset presents almost the same activities of the ones described

by Choi et al. (CHOI; SAVARESE, 2012) and used in this dissertation, with the inclusion of

fighting events and the lack of queuing events. Upon analysis, it was clear to us that fighting

would not be possible to recognize using solely trajectories – thus, we decide to ignore the frames

in which such event appears. Additionally, some sequences presented wrong annotation or no

annotation at all. We carefully annotated and corrected the interactions, bounding boxes and

collective activities. We made this data publicly available14 to stimulate a broader application of

this dataset in the future.

14<https://github.com/gustavofuhr/behave_comp_anno>

https://github.com/gustavofuhr/behave_comp_anno
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Since our goal is to attest how the method deals with different camera setups, this time

we did not perform a leave-one-sequence-out approach for this set of experiments. Instead, we

performed a cross-dataset validation: train only with the Choi dataset and test with BEHAVE.

The interactions were the same as proposed before and the result of classification can be seen in

Figure 4.18.

Figure 4.18 – Interaction estimates using only Choi dataset as the training set and Behave as testing.
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It is worth noting that the interactions in the BEHAVE dataset are mainly standing pair,

splitting, approaching, walking-together with very few being-followed and following samples.

However, our method has shown an impressive capability of recognizing interaction in new,

unseen sequences.

Finally, we apply the same protocol for testing collective behaviors, training with Choi

dataset and testing with BEHAVE. The parameters of the proposed method where kept the same,

with the exception of removing the PCA-based shape descriptor p(t) defined by Equation (3.28).

The reason behind this choice is that for the BEHAVE dataset there is no need to differentiate

between standing groups, since there are no queuing events. Also, we removed the three

sequences from the Choi dataset that were labeled as Queuing, so that this class was completely

ignored in the experiment. The results can be observed in Figure 4.19.

There results indicate that our method is capable of generalizing for different camera

setups in the context of collective behavior well. Moreover, it does not require two much training

in terms of variability to correctly estimate the collective behavior. We believe that this comes

from the formulation of a two stage approach, which helps the understanding of new instances
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Figure 4.19 – Confusion matrix related to cross-dataset validation of collective behavior classification –
Choi dataset as the training set and BEHAVE as testing.
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of previously trained behaviors. One instance where this is clear is the from Dismissal events –

and analogous to Gathering. In the BEHAVE dataset, these events usually appear as a part of a

group leaving the remaining subjects of a standing group. On the other hand, in the Choi dataset,

the Dismissal events always concern the whole subjects (no subject is left). Despite that, because

we based our descriptor on interactions and shape dynamics using ground plane trajectories, we

are able to generalize across different exemplars of the same class.

Two sample frames of the BEHAVE dataset are illustrated in Figure 4.20, along with the

corresponding interactions and behaviors correctly estimated by our method. Once again, we can

see that our method is able to infer the correct information at the different levels of interaction

and collective behavior, providing useful information for the intended applications.
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Figure 4.20 – Selected frames from BEHAVE dataset showing interactions and collective behavior
estimates.
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5 CONCLUSIONS AND FUTURE WORK

As presented in this dissertation, there are several problems related to the task of extracting

trajectories and inferring semantic information from surveillance cameras. We proposed in this

work several contributions to key elements of this pipeline, namely self-calibration, pedestrian

detection and tracking and collective behavior recognition. In fact, instead of focusing on a single

problem, we proposed contributions across these four problems by identifying common steps

and objectives among them. Moreover, we show how camera calibration can play an essential

role to reduce the complexity and increase the performance of such systems.

This dissertation presented a new self-calibration approach for static video cameras

based on pedestrian detectors and background removal. It first computes a linear estimation

of the projection matrix based on people poles, by extending the approach presented in (LV;

ZHAO; NEVATIA, 2002b). Then, a novel non-linear cost function is used to penalize orientation

and height errors of re-projected vertical poles, aiming to keep coherence with the expected

standing pose of pedestrians in surveillance scenarios. We have also proposed an application

of the camera self-calibration method for pedestrian detection. Within the widely used sliding-

window framework, we devised a simple approach to create detection candidates that are

coherent with the scene geometry. We showed that our self-calibration method significantly

improves upon previous work of Lv. et al. (LV; ZHAO; NEVATIA, 2002b) and that our proposed

modification for pedestrian detectors increases accuracy and reduces the number of candidates

need to be tested. As future work, we also intend to include in our pipeline simpler strategies to

compute the initial calibration, since our optimization is capable of greatly improving a given

initialization. Additionally, we would like to combine our approach for generating detection

candidates to modern detectors based on Convolutional Neural Networks (CNNs), such as the

Fast R-CNN (GIRSHICK et al., 2016), to replace costlier approaches such as selective search.

Additionally, this work presented a robust approach to multiple pedestrian tracking using

monocular calibrated cameras. Our method explores the motion of independently tracked patches,

extracted for each pedestrian, and combines these results with a predicted motion vector and the

result of a pedestrian detector in a robust manner using a weighted median filter vector. Our

experimental results indicated that the proposed tracker is able to handle short-term occlusions

and scale changes. Also, it presented accuracy and precision metrics comparable to (or better

than) competitive tracking techniques at near real-time performance. Besides, we show that

the results produced by the proposed self-calibration scheme are accurate enough for tracking

purposes, with results very close to those obtained using the ground truth calibration. As future
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work, we intend to investigate the use of different features in our framework that can help

improve tracking performance. Particularly those based on deep learning such as proposed

in (BERTINETTO et al., 2016) could easily be adapted to our framework.

Finally, we proposed a novel method to describe and detect interactions and collective

activities using only trajectory information in a surveillance scenario. We presented novel

compact descriptors (PID and CBD) that combine cues with different natures, which are fed

to a two-layered Random Forest to achieve the final classification. Our experimental results

showed that the proposed method achieves higher accuracy than competitive approaches. We

also showed that our method is able to generalize across different camera setups, due to the use

of ground plane trajectories and very small feature vectors. Further work here will concentrate on

filtering the pool of interactions to reduce noise in the collective activity recognition. We are also

interested in extending the method for different, more complex activities that involve a sequence

of collective behaviors, such as pick-pocketing. Also, there is a surprising lack of datasets and

protocols for behavior analysis. We made available annotations for a publicly available dataset

and we are still interested in generating more sequences with different events/scenarios for

activity recognition in the context of video surveillance.
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6 APPENDIX

6.1 Accepted Publications

For the sake of completeness, we listed below the papers published as at the time of the

writing of this dissertation.

FÜHR, G., JUNG, C. R. Robust patch-based pedestrian tracking using monocular

calibrated cameras. 25th Conference on Graphics, Patterns and Images (SIBGRAPI), 2012.

p.166-173.

Abstract - Although several methods for pedestrian tracking can be found in

the literature, robustly tracking a person in unconstrained environments is an open

and active research problem. In this paper, we propose a method that represents

each pedestrian as a set of multiple fragments, aiming robustness with respect to

occlusions. These patches are tracked individually and their translation vectors are

combined robustly in the world coordinate frame using Weighted Vector Median

Filters (WVMF). Additionally, the algorithm uses the camera parameters to both

estimate the person scale in a straightforward manner and to limit the search region

used to track each fragment. Experiments carried out using two publicly available

datasets (PETS and TownCentre) are presented, and they indicate that the proposed

method is robust to partial occlusions and large scale changes. According to our ex-

periments, the proposed approach outperforms, regarding the quality of localization,

some of the methods in the current state of the art.

FÜHR, G., JUNG, C. R. Combining patch matching and detection for robust pedes-

trian tracking in monocular calibrated cameras. Pattern Recognition Letters (Special Issue),

2013, 39, p.11-20.

Abstract - This paper presents a new approach for tracking multiple people in

monocular calibrated cameras combining patch matching and pedestrian detection.

Initially, background removal and pedestrian detection are used in conjunction

with the vertical standing hypothesis to initialize the targets with multiples patches.

In the tracking step, each patch related to a given target is matched individually
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across frames, and their translation vectors are combined robustly with pedestrian

detection results in the world coordinate frame using weighted vector median filters.

Additionally, the algorithm uses the camera parameters to both estimate the person

scale in a straightforward manner and to limit the search region used to track

each fragment. Our experimental results indicate that our tracker can deal with

occlusions and video sequences with strong appearance variations, presenting results

comparable to or better than existing state-of-the-art algorithms.

FÜHR, G., JUNG, C. R. Camera self-calibration based on non-linear opti- mization

and applications in surveillance systems. IEEE Transactions on Circuits and Systems for

Video Technology (TCSVT), 2015.

Abstract - This paper presents a new approach for self-calibration of static

cameras in the context of surveillance applications. Initially, a pedestrian detector is

applied and the responses are validated using background removal. Then, foreground-

related pixels within the detection results are used to estimate the feet-head line

segments of each person (called poles), which are used to find a linear estimate for

the camera matrix. Finally, a non-linear cost function is used to refine the initial

estimate, aiming to improve mostly the orientation of the re-projected poles. We also

present different applications of self-calibration in tasks related to video surveillance

itself, such as improvements to pedestrian detection and tracking algorithms, and

augmented reality applications, such as the insertion of virtual cameras to aid the

placement of real cameras in the scene.

FÜHR, G., DE PAULA, M. B, JUNG, C. R. On the use of calibration for pedestrian

detection in on-board vehicular cameras. Conference on Graphics, Patterns and Images

(SIBGRAPI), 29, 2016.

Abstract - This paper presents a new approach for pedestrian detection in the

context of Driver Assistance Systems (DAS). Given a camera with known intrinsic

parameters, a flexible online calibration scheme that explores the expected road

geometry is used to obtain the extrinsic parameters. With the full camera parameters,

the expected geometry and size of a standing person is used to customize a baseline

pedestrian detector based on sliding windows and multiple scales. Our experimental
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results show that the proposed approach allows the use of detachable cameras in

the context of DAS, improving the accuracy of the baseline pedestrian detector.

Furthermore, the flexible calibration scheme allows to estimate the distance from

detected pedestrians to the camera using detachable cameras, opposed to the fixed

onboard cameras in commercial vehicles that support vision-based DAS.

6.2 Submitted for Publication

FÜHR, G., JUNG, C. R. From Pairwise Interactions to Collective Behavior Recogni-

tion Using Layered Random Forests.

Abstract - This paper presents a novel hierarchical approach for collective

behavior detection based on trajectories. In the first layer, we introduce a novel

feature called Personal Interaction Description (PID), which combines the spatial

distribution of a pair of pedestrians within a temporal window with a pyramidal

representation of the relative speed to detect pairwise interactions. These interactions

are then combined with higher level features related to the mean speed and shape

formed by the pedestrians in the scene, generating a Collective Behavior Descriptor

(CBD) that is used to identify collective behaviors in a second stage. In both layers,

Random Forests were used as classifiers, since they allow features of different natures

to be combined seamlessly. Our experimental results indicate that the proposed

method achieves better results than state of the art techniques in benchmarked

datasets, being also capable of identifying the role of each pedestrian in the detected

collective behavior.

6.3 Resumo estendido

Nas últimas décadas, o número de câmeras distribuídas em ambientes internos e externos

aumentou de maneira significativa. Porém, a enorme quantidade de dados capturados por estas

câmeras ainda é processado, em grande parte, de maneira manual. Especificamente na área de

vigilância, se mostra clara a necessidade de um sistema inteligente capaz de analisar e extrair

informações semânticas das sequências de vídeo. Essa necessidade favoreceu o surgimento de

várias propostas da comunidade de Visão Computacional nos últimos anos.

O escopo das aplicações de sistemas de vigilância inteligente é bastante amplo (HAER-
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ING; VENETIANER; LIPTON, 2008). Muitas são referentes a segurança, como aplicações

voltadas para detecção de intrusos (LIM; TANG; CHAN, 2014), objetos abandonados (FERRY-

MAN et al., 2013) entre outros; além disso, existem aplicações como controle de tráfego (XIA et

al., 2016), sinopse de vídeo (RAV-ACHA; PRITCH; PELEG, 2006; LEE; GRAUMAN, 2015) e

até análise de público para mercados de varejo (DENMAN et al., 2012).

Esta tese tem como objetivo fornecer uma solução robusta para os problemas de rastrea-

mento de pedestres e análise de comportamento coletivo em sequências de vigilância. Mais

precisamente, deseja-se extrair as trajetórias de todos os pedestres presentes na sequência, as

interações entre eles (por exemplo, um par está se aproximando, andando junto, etc.) e a ativi-

dade global da cena (encontro de pessoas, perseguição, etc.). O pipeline proposto (Fig. 1.3) é

inicializado com a calibração da câmera. Nossa hipótese é que, em sistemas de vigilância, onde

a câmera se mantém estática por (ao menos) um período razoável de tempo, a calibração deve

simplificar e adicionar informações relevantes aos problemas de rastreamento e detecção de

eventos coletivos, reduzindo a dependência de uma configuração específica de câmera.

No Seção 3.1 nós propomos uma técnica de calibragem de câmera sem nenhuma inter-

venção manual. O algoritmo utiliza detecção de pedestres e segmentação de fundo para detectar

pontos de fuga e a linha do horizonte da câmera. A matriz de projeção da câmera é estimada

utilizando uma abordagem composta por dois estágios: inicialização e otimização não-linear.

Adicionalmente, nós mostramos como utilizar a calibração de câmera para simplificar a detecção

de pedestres. Dois diferentes métodos de detecção de pessoas da literatura (DALAL; TRIGGS,

2005; DOLLÁR et al., 2009) são modificados para criar candidatos coerentes com a geometria

da cena. Resultados mostram que nossa proposta reduz o número de falsos positivos e ao mesmo

tempo reduz significativamente o número de candidatos e o tempo de execução.

Adicionalmente, nós propomos a utilização de calibração em rastreamento de pedestres

(Seção 3.2). Mais detalhadamente, nós desenvolvemos um novo framework para rastreamento de

pedestres que combina informações de diferentes origens em coordenandas de mundo utilizando

weighted median filter vectors. Nossa técnica de rastreamento divide os pedestres em segmentos,

rastreando-os individualmente, para aumentar a robustez a oclusões. Além disso, informações de

predição de movimento e detecção de pedestres são combinadas de maneira causal. Experimentos

em sequências de vídeo popularmente utilizada na literatura mostram que nosso método consegue

rastrear pedestres de maneira robusta, atingindo performance perto de tempo real.

Dadas as trajetórias extraídas no plano do sistema de coordenadas do mundo, nós propo-

mos um método capaz de extrair o tipo de interação entre um par de pessoas além da atividade

apresentada por um grupo. O processo é realizado em duas etapas subsequentes utilizando
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Random Forests como a ferramenta de classificação. Na primeira etapa, um histograma das dis-

tâncias relativas para cada par de pessoas é construído. A definição dos limites deste histograma

é baseada no trabalho psicológico de Hall (HALL, 1973) que identifica níveis de interação que

pessoas apresentam de acordo com a distância entre as mesmas. Além disso, nós extraímos a ve-

locidade relativa do par, com o objetivo de identificar se eles estão se aproximando, se afastando

ou mantendo uma velocidade constante. Depois de realizada a classificação de interações par a

par, nós fornecemos estas informações junto com fatores relativos a dinâmica da disposição do

grupo e velocidade média para a segunda camada de classificação. Em experimentos em dois

datasets comumente utilizadas na literatura nós demonstramos que nosso método é capaz de

distinguir atividades com alta acurácia e consegue generalizar para diferentes disposições de

câmera.
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